RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

ON THE ADDITIVITY OF CHANGES IN OPTICAL PROPERTIES DURING SIMULTANEOUS AND SEPARATE IRRADIATION OF ZnO POWDER MODIFIED WITH SiO NANOPARTICLES BY PROTONS AND QUANTA OF THE SOLAR SPECTRUM

PII
S30345502S0023420625050073-1
DOI
10.7868/S3034550225050073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 5
Pages
541-550
Abstract
The results of a study of the spectra of diffuse reflection (ρ) and integral absorption coefficient (a) of ZnO powders, used as one of the best pigments for temperature-control coatings of spacecraft, are presented. To increase the photo- and radiation resistance of micron-sized mZnO powder, one of the effective methods was used – modification with nSiO silicon dioxide nanoparticles. The change in the optical properties of the modified mZnO/nSiO powder was studied under separate and simultaneous irradiation with protons with an energy of 5 keV and solar spectrum quanta (SSP) with an intensity three times higher than the solar one. The ρ spectra were recorded after each irradiation period in a vacuum at the irradiation site (in situ), which made it possible to avoid the interaction of defects formed during irradiation with atmospheric gases. Calculations were carried out for the additivity coefficient, determined by the ratio of the sum of changes in the absorption coefficient as under separate irradiation to changes under simultaneous exposure to radiation. It was found that, depending on the irradiation time, it varies from 1.30 to 1.39. The results of the study allow us to conclude that if in outer space the pigment is simultaneously affected by protons of the Solar wind and SSP, then ground-based tests must be carried out with their simultaneous action. If tests are carried out under separate irradiation, then in order to obtain reliable changes in the performance characteristics of the pigment it is necessary to introduce coefficients that take into account synergistic effects – additivity coefficients.
Keywords
Date of publication
07.01.2026
Year of publication
2026
Number of purchasers
0
Views
27

References

  1. 1. Cargo M.Mc., Greenberg S.A., Douglas N.I. Radiation-Induced Absorption Bands in Spacecraft Thermal Control Coating Pigments // Thermophysics: Applications to Thermal Design of Spacecraft. 1970. V. 23. Art.ID. 189.
  2. 2. Барбашев Е.А., Богатов В.А., Козич В.И. Влияние электронно-протонного облучения в вакууме на оптические свойства терморегулирующих покрытий // Космическая технология и материаловедение. М.: Наука, 1977. C. 117–128.
  3. 3. Петров Г.М. Моделирование тепловых режимов космических летательных аппаратов и окружающей среды. М.: Машиностроение, 1972.
  4. 4. Лукас Дж. Теплообмен и тепловой режим космических аппаратов. М.: Мир, 1974.
  5. 5. Brown R.R., Fogdall L.B. Electron ultraviolet radiation effects in thermal control coatings // Progress in Astronautics: Therm. Des. Principles of Spacecraft and Entry. 1969. V. 21. P. 697–724.
  6. 6. Millard I.P. Optical Stabilis of Coatings Exposed to Four Years Space Environment on OSO-III // AIAA Paper. 1973. V. 734. P. 1–12.
  7. 7. Delfini A., Pastore R., Albano M. et al. Synergistic Effects of Atomic Oxygen and UV Radiation on Carbon/ Carbon Plates at Different Attitude Positions // Applied Sciences. 2024. V. 14(13). Art.ID. 5850. https://doi.org/10.3390/app14135850
  8. 8. Faye D., Marco J. Effects of ultraviolet and protons radiations on thermal control coatings after contamination // Materials in a Space Environment. V. 540. P. 527–533.
  9. 9. Yeritsyan H., Sahakyan A., Nikoghosyan S. et al. Effect of Electron and Ultraviolet Radiations and Temperature on SiConductivity // J. Spacecraft and Rockets. 2011. V. 48. P. 34–37. https://doi.org/10.2514/1.49303
  10. 10. Шувалов В.А., Письменный Н.И., Кочубей Г.С. и др. Потери массы полиимидных пленок космических аппаратов при воздействии атомарного кислорода и вакуумного ультрафиолетового излучения // Косм. исслед. 2014. T. 52. № 2. C. 106–112. https://doi.org/10.7868/S0023420614020071
  11. 11. Mikhailov M.M., Lapin A.N., Yuryev S.A. Features of Optical Degradation under Separate and Simultaneous Events of Irradiation of a BaSO Powder Modified by Nanoparticles // J. Surface Investigation. 2021. V. 15. P. 954–960. https://doi.org/10.1134/S1027451021050104
  12. 12. Volkov A.G., Dyugaeva N.A., Kuvyrkin G.N. et al. Studying the change in characteristics of optical surfaces of a spacecraft // Cosmic Research. 2017. V. 55. P. 124–127. https://doi.org/10.1134/S0010952517020071
  13. 13. Li Ch., Liang Zh., Xiao H. et al. Synthesis of ZnO/ ZnSiO/SiO composite pigments with enhanced reflectance and radiation-stability under low-energy proton irradiation // Materials Letters. 2010. V. 64. P. 1972–1974.
  14. 14. Wang X., Lu X., Ju P. et al. Influence of ZnO on thermal control property and corrosion resistance of plasma electrolytic oxidation coatings on Mg alloy // Surface and coatings technology. 2021. V. 409. Art.ID. 126905.
  15. 15. Дубин А.Н., Невищенко В.В., Ли Ч. Деградация оптических свойств двухслойных полых частиц ZnO/SiO при облучении протонами // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. № 4. C. 70–76.
  16. 16. Luna M., Delgado J., Almoraima Gil M.L. TiO-SiO Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials // Nanomaterials. 2018. V. 8. Iss. 3. Art.ID. 177. https://doi.org/10.3390/nano 8030177
  17. 17. Alam M.A., Samad U.A., Anis A. et al. Effects of SiO and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique // Polymers (Basel). 2021. V. 3. Iss. 99. Art.ID. 1490.
  18. 18. Mikhailov M.M., Yuryev S.A., Lapin A.N. et al. Radiation Resistance of Optical Nanopower Modified by Y2O3 Particles // Russian Physics J. 2024. V. 67. P. 694–700.
  19. 19. Mikhailov M.M., Yuryev S.A., Goronchko V.A. et al. The effect of particles size of Gd2O3 on the radiation protection mechanisms of ZnO // Materials Science and Engineering: B. V. 308. https://doi.org/10.1016/j.mseb.2024.117555
  20. 20. Johnson J.A., Cerbus C.A., Haines A.I. et al. Review of improved thermal control coating development for NASA's SEE Program // AIAA Paper. 2005. Art. ID. 1378.
  21. 21. ASTM E490-22 Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, 2022.
  22. 22. ASTM E903-20 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres, 2020.
  23. 23. Blanco M., Coello J., Ityrriaga H. et al. Near-infrared spectroscopy in the pharmaceutical industry // Analyst. 1998. V. 124. P. 135–150.
  24. 24. Blanco M., Vitarroya I. NIR spectroscopy: A rapid-response analytical tool // Tracternels in Analytical Chemistry. 2002. V. 21. P. 240–250.
  25. 25. Wilson R.H., Nadeau K.P., Jaworski F.B. et al. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization // J. Biomedical Optics. 2015. V. 20.
  26. 26. Kamari L., Li W.Z., Vannoy C.H. et al. Zinc oxide micro- and nanoparticles: Synthesis, structure and optical properties // Materials Research Bulletin. 2010. V. 45. Iss. 2. P. 190–196.
  27. 27. Mikhailov M.M., Yuryev S.A., Lapin A.N. et al. Reflective thermal control coating for spacecraft based on ZnO pigment and LiSiO silicate modified by SiO nanoparticles // Ceramics International. 2023. V. 49. Iss. 12. P. 20817–20821. https://doi.org/10.1016/j.ceramint.2023.03.214
  28. 28. Zhou X.Q., Zhang D.D., Hayat Z. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture // Processes. 2023. V. 11. Iss. 4. Art.ID. 1193. https://doi.org/10.3390/pr11041193
  29. 29. Шаминова К.В. Физика полупроводников // М.: Энергоиздат, 1984. 320 с.
  30. 30. Михайлов М.М., Нещименко В.В. Спектры диф-фузного отражения в ближней ИК-области, как метод анализа поверхности порошков ZnO, модифицированных наночастицами // Поверхность. Рентгеновские синхротронные и нейтронные ис-следования. 2009. № 8. С. 233–246.
  31. 31. Ziegler J.F., Ziegler M.D., Biersack J.P. SRIM – The stopping and range of ions in matter // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. Iss. 11–12. P. 1818–1823.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library