RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

METHODS OF A SATELLITE FORMATION ORBITAL MOTION CONTROL BASED ON CONSENSUS ALGORITHMS

PII
S30345502S0023420625050023-1
DOI
10.7868/S3034550225050023
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 5
Pages
471-481
Abstract
Methods for synthesizing control of the relative motion of a group of spacecraft are considered. The main goal is to develop a control strategy that compensates for the disintegration of the group caused by relative orbital drift. The control design employs techniques based on various types of graphs to describe satellite interactions. A proof is provided demonstrating the feasibility of eliminating relative satellite drift using a method based on directed graphs. The resulting algorithm is adapted to scenarios where one or more spacecraft in the group may malfunction. To derive the control in such cases, a modified version of the Raft protocol for achieving consensus in multi-agent systems is used. In addition to analytical derivations and the general methodology, the work presents results from numerical simulations.
Keywords
Date of publication
07.01.2026
Year of publication
2026
Number of purchasers
0
Views
32

References

  1. 1. Mesbahi M., Egerstedt M. Graph theoretic methods in multiagent networks. Princeton University Press, 2010. 424 p.
  2. 2. Monakhova U., Ivanov D., Mashtakov Y. et al. Communication area estimation for decentralized control of nanosatellites swarm // Acta Astronautica. 2023. V. 211. P. 49–59. https://doi.org/10.1016/j.actaastro.2023.06.003
  3. 3. Дадашев Р.Р., Шестаков С.А. Методика управления группой спутников на основе коммуникационных графов // Препринты ИПМ им. М.В. Келдыша. 2022. № 90. С. 1–31. https://doi.org/10.20948/prepr-2022-90
  4. 4. Clohessy W.H., Wiltshire R.S. Terminal Guidance System for Satellite Rendezvous // J. Aerospace Sciences. 1960. V. 27. Iss. 9. P. 653–658. https://doi.org/10.2514/8.8704
  5. 5. Fischer M.J., Lynch N.A., Paterson M.S. Impossibility of distributed consensus with one faulty process // J. Association for Computing Machinery. 1985. V. 32. Iss. 2. P. 374–382. https://doi.org/10.1145/3149.214121
  6. 6. Lamport L. The part-time parliament // ACM Transactions on Computer Systems. 1998. V. 16. Iss. 2. P. 133–169. https://doi.org/10.1145/279227.279229
  7. 7. Lamport L. Lower bounds for asynchronous consensus // Distributed Computing. 2006. V. 19. Iss. 2. P. 104–125. https://doi.org/10.1007/s00446-006-0155-x
  8. 8. Oki B.M., Liskov B.H. Viewstamped replication: a general primary copy // Proc. 7th annual ACM Symposium on Principles of distributed computing – PODC'88. 1988. P. 8–17. https://doi.org/10.1145/62546.62549
  9. 9. Skeen D. A Quorum-Based Commit Protocol // Proc. 6th Berkeley Workshop. 1982. P. 69–80.
  10. 10. Junqueira F.P., Reed B.C., Serafini M. Zab: High-performance broadcast for primary-backup systems // IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN). 2011. P. 245–256. https://doi.org/10.1109/DSN.2011.5958223
  11. 11. Ongaro D., Ousterhout J. In search of an understandable consensus algorithm // USENIX Annual Technical Conference (USENIX ATC 14). 2014. P. 305–319. https://doi.org/10.5555/2643634.2643666
  12. 12. Tariverdi A., Torresen J. Rafting Towards Consensus: Formation Control of Distributed Dynamical Systems. 2023. https://doi.org/10.48550/arXiv.2308.10097
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library