RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

PARAMETRIC ANALYSIS AND ESTIMATION OF THE WORST ATTITUDE ACCURACY OF A SATELLITE

PII
S30345502S0023420625040066-1
DOI
10.7868/S3034550225040066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 4
Pages
407-422
Abstract
The paper considers the angular motion of a spacecraft under the influence of various disturbing torques. A method for studying the space of disturbing parameters is proposed to estimate the probability of attitude accuracy falling within a certain interval, as well as to identify the worst accuracy and the corresponding disturbing parameters. To analyze the structure of the entire set of disturbing parameters, a method for obtaining a statistical ensemble and further interpretation of the data is used. The worst value of the attitude accuracy is sought using the particle swarm optimization method, which takes into account the restrictions on the disturbing parameters. A numerical example of analyzing the attitude accuracy in the orbital stabilization mode by both methods is given.
Keywords
Date of publication
24.11.2024
Year of publication
2024
Number of purchasers
0
Views
30

References

  1. 1. Brasoveanu D., Hashmall J. Spacecraft Attitude Determination Accuracy From Mission Experience // Flight Mech. Theory, NASA, 1994. P. 153–168. https://www.tib.eu/de/suchen/id/BLCP%3ACN003744905
  2. 2. Henamos A.H., Haanos I.A., Konomuev E.C. u dp. Реализация режима солнечной ориентации космического аппарата с помощью системы двигателей-маховиков // Косм. исслед. 2023. T. 61. C. 143–156. https://journals.rcsi.science/0023-4206/article/view/J37338
  3. 3. Boussadia H., Mohammed M., Abdelkrim M. et al. Estimation of satellite attitude dynamics and external torques via mixed Kalman/H-infinity filter under inertia uncertainties // Aerosp. Syst. 2023. V. 6. P. 633–640. https://doi.org/10.1007/s42401-023-00235-4
  4. 4. Kim J., Bang H. Observer-Based Disturbance Estimation for a Spacecraft Inertial Pointing Using Magnetic Torquers // Trans. JAPAN Soc. Aeronaut. Sp. Sci. Aerosp. Technol. JAPAN. 2019. V. 17. https://doi.org/10.2322/tastj.17.447
  5. 5. Ivanov D., Roldugin D. Nanosatellite Three-Axis Attitude Control and Determination Using Two Magnetorquers Only // Proc. 9th International Conference on Recent Advances in Space Technologies. Istanbul, Turkey. 2019. P. 761–768. https://doi.org/10.1109/RAST.2019.8767828
  6. 6. Ivanov D., Roldugin D., Ovchinnikov M. Three-Axis Attitude Determination Using Magnetorquers // J. Guid. Control Dyn. 2018. V. 41. P. 1–24. https://doi.org/10.2514/1.G003698
  7. 7. Ivanov D.S., Ovchinnikov M.Y., Penkov V.I. et al. Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties // Acta Astronaut. 2017. V. 132. P. 103–110. https://doi.org/10.1016/j.actaastro.2016.11.045
  8. 8. Ulrich S., Côté J., de Lafontaine J. In-Flight Attitude Perturbation Estimation for Earth-Orbiting Spacecraft // J. Astronaut. Sci. 2009. V. 57. https://doi.org/10.1007/BF03321520
  9. 9. Khurshid O., Selkännho J., Soken H. et al. Small satellite attitude determination during plasma brake decribiting experiment // Acta Astronaut. 2016. V. 129. https://doi.org/10.1016/j.actaastro.2016.08.035
  10. 10. Wertz J. Spacecraft Attitude Determination And Control. Springer, 1978. https://doi.org/10.1007/978-94-009-9907-7
  11. 11. ECSS-E-ST-60-10C, Space engineering – Control performance, ECSS Secretariat ESA-ESTEC Requirements & Standards Division, Noordwijk, The Netherlands, 2008.
  12. 12. ECSS-E-HB-60-10A, Space engineering – Control performance guidelines, ECSS Secretariat ESA-ESTEC Requirements & Standards Division, Noordwijk, The Netherlands, 2010.
  13. 13. Kennedy J., Eberhart R. Particle swarm optimization // Proc. ICNN’95-International Conf. Neural Networks. Perth, WA, Australia. 1995. P. 1942–1948.
  14. 14. Guerman A.D., Ivanov D.S., Roldugin D.S. et al. Orbital and Angular Dynamics Analysis of the Small Satellite SAR Mission INFANTE // Cosmic Research. 2020. V. 58. P. 206–217. https://doi.org/10.1134/S0010952520030016
  15. 15. Зубов В.И. Лекции по теории управления. М.: Главная редакция физико-математической литературы изд-ва “Наука”, 1975.
  16. 16. Tsiotras P. New Control Laws for the Attitude Stabilization of Rigid Bodies // IFAC Proc. 1994. V. 27. P. 321–326. https://doi.org/10.1016/S1474-6670 (17)45820-4
  17. 17. Осинникова М.Ю., Ткачев С.С., Карпенко С.О. Исследование углового движения микроспутника Чибис-Метрехосным маховичным управлением // Косм. исслед. 2012. T. 50. C. 462–471.
  18. 18. Барбашин Е.А. Введение в теорию устойчивости. М.: Наука, 1967.
  19. 19. Аппельova A., Abdelrahman N., Ivanov D. et al. CubeSat Magnetic Atlas and in-Orbit Compensation of Residual Magnetic Dipole // Proc. 71th International Astronautical Congress. The CyberSpace Edition. 12–14 October 2020.
  20. 20. Ovchinnikov M., Ivanov D. Approach to study satellite attitude determination algorithms // Acta Astronaut. 2014. V. 98. P. 133–137. https://doi.org/10.1016/j.actaastro.2014.01.024
  21. 21. Ivanov D., Ovchinnikov M., Ivlev N. et al. Analytical study of microsatellite attitude determination algorithms // Acta Astronaut. 2015. V. 116 P. 339–348. https://doi.org/10.1016/j.actaastro.2015.07.001
  22. 22. Chasser C., Noteborn R., Bodin P. et al. 3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission // CEAS Sp. J. 2013. V. 5. P. 1–17. https://doi.org/10.1007/s12567-013-0034-9
  23. 23. Bodin P., Larsson R., Nilsson F. et al. PRISMA: An In-Orbit Test Bed for Guidance, Navigation, and Control Experiments // J. Spacecr. Rockets. 2009. V. 46. P. 615–623. https://doi.org/10.2514/1.40161
  24. 24. Ovchinnikov M.Y., Roldugin D.S., Penkov V.I. et al. Fully magnetic sliding mode control for acquiring three-axis attitude // Acta Astronaut. 2016. V. 121. P. 59–62. https://doi.org/10.1016/j.actaastro.2015.12.031
  25. 25. Tkachev S., Mashtakov Y., Ivanov D. et al. Effect of Reaction Wheel Imbalances on Attitude and Stabilization Accuracy // Aerosp. 2021. V. 8. https://doi.org/10.3390/aerospace8090252
  26. 26. Alcorn J., Allard C., Schaub H. Fully Coupled Reaction Wheel Static and Dynamic Imbalance for Spacecraft Jitter Modeling // J. Guid. Control. Dyn. 2018. V. 41. P. 1380–1388. https://doi.org/10.2514/1.G003277
  27. 27. Hoefding W. Probability Inequalities for Sums of Bounded Random Variables // J. Am. Stat. Assoc. 1963. V. 58. P. 13–30. https://doi.org/10.1080/01621459.1963.10500830
  28. 28. Dvoretzky A., Kiefer J., Wolfowitz J. Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator // Ann. Math. Stat. 1956. V. 27. P. 642–669. https://doi.org/10.1214/aoms/1177728174
  29. 29. Kuzin S., Bogachev S., Pertsov A. et al. EUV telescope for a Cubesat nanosatellite // Appl. Opt. 2023. 62. P. 8462–8471. https://doi.org/10.1364/AO.501437
  30. 30. Kennedy R., Eberhart J. Particle swarm optimization // Proc. Int. Conf. Neural Networks. IEEE. Perth, Australia. 1995. V. 4. P. 1942–1948.
  31. 31. Trelea I.C. The particle swarm optimization algorithm: convergence analysis and parameter selection // Inf. Process. Lett. 2003. V. 85. P. 317–325. https://doi.org/10.1016/S0020-0190 (02)00447-7
  32. 32. Vanderbergh F., Engelbrecht A. A study of particle swarm optimization particle trajectories // Inf. Sci. 2006. V. 176. P. 937–971.
  33. 33. Okhitina A., Roldugin D., Tkachev S. Application of the PSO for the construction of a 3-axis stable magnetically actuated satellite angular motion // Acta Astronaut. 2022. V. 195. P. 86–97. https://doi.org/10.1016/J.ACTAASTRO.2022.03.001
  34. 34. Okhitina A., Roldugin D., Tkachev S. Magnetically controllable attitude trajectory constructed using the particle swarm optimization method // 72nd Int. Astronaut. Congr. Dubai, UAE. 2021.
  35. 35. Okhitina A., Tkachev S., Roldugin D. Comparative cost functions analysis in the construction of a reference angular motion implemented by magnetorquers // Aerospace. 2023. V. 10. Art.ID. 468.
  36. 36. Benewald B.B., Shuum A.M. Brunstine appozima-muveckux chii na вращательное движение искусственных спутников. Киев: Наук. думк, 1984.
  37. 37. Duboi S.H.C. Graphical Exploratory Data Analysis. Springer, 2012.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library