RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

SOME FEATURES OF THE FORMATION OF ABSORBED DOSE BEHIND THIN SHIELDINGS IN THE EARTH’S RADIATION BELTS

PII
S30345502S0023420625040025-1
DOI
10.7868/S3034550225040025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 4
Pages
364-376
Abstract
In this paper, the correlation of the Earth’s Radiation Belts electron doses in low near-Earth orbit behind a small shield with the average indicators of the Earth’s magnetosphere state during periods of geomagnetic disturbances is shown and analyzed. The results of the “Expose-R2” experiment on the ISS and “DEPRON” on the “Lomonosov” satellite (SINP MSU) are considered. In the “Expose-R2” experiment on the ISS, the absorbed dose behind the shield at 0.6 g cm was measured every 10 seconds. In the “DEPRON” experiment, the absorbed dose behind the shield at 0.45 g cm and 0.81 g cm was measured every second. Due to a large number of measurement gaps in the “DEPRON” experiment, a procedure for restoring the experimental data is proposed. Based on the data obtained, correlations between the average daily absorbed dose rate and various cosmophysical indices in fixed ranges of -coordinate variations (the McIlwain parameter, at the geomagnetic equator equal to the distance to the Earth’s center in Earth radii) are considered. It is shown that after geomagnetic disturbances, the linear regression coefficients between the absorbed dose rate and the considered geophysical indices have a uniform dependence on the -coordinate. For magnetic storms with < 100 nT, the dependences of the linear regression coefficients on the -coordinate are well approximated by a normal distribution up to = 4.7. The average value of the maximum position = 4.10 ± 0.15, standard deviation σ = 0.40 ± 0.07. For magnetic storms with > 100 nT, the distribution maximum shifts to = 3.0 and σ = 0.22.
Keywords
Date of publication
29.01.2025
Year of publication
2025
Number of purchasers
0
Views
32

References

  1. 1. Морозова Е.И., Безродных И.П., Семенов В.Т. Радиационные факторы риска для космических аппаратов // Вопросы электромеханики. 2009. Т. 112. С. 35–40.
  2. 2. Митрикас В.Г. Модель защищенности обитаемых отсеков служебного модуля международной космической станции для оценки радиационной опасности // Авиакосмическая и экологическая медицина. 2006. Т. 38. № 3. С. 41–47.
  3. 3. Deme S., Apathy I., Hejja I. et al. Extra dose due to extravehicular activity during the NASA-4 mission measured an on-board TLD system // Radiation Protection Dosimetry. 1999. V. 85(1–4). P. 121–124.
  4. 4. Золотарев И.А. Определение радиационной нагрузки в космическом аппарате при полете по высокоширотной орбите: дис. … канд. физ.-мат. наук: 01.03.03 / Золотарев Иван Анатольевич. М., 2022. 114 с.
  5. 5. ГОСТ 25645.138. Пояса Земли радиационные естественные. Модель пространственно-энергетического распределения плотности потока протонов. М.: Изд. стандартов, 1987. 50 с.
  6. 6. ГОСТ 25645.139. Пояса Земли радиационные естественные. Модель пространственно-энергетического распределения плотности потока электронов. М.: Изд. стандартов, 1987. 135 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library