RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

THE INFLUENCE OF JUMP CONDITIONS IN CONJUGATE VARIABLES ON THE MULTIORBIT SPACECRAFT TRANSFERS WITH SWITCHING THE LOW THRUST OFF IN THE EARTH’S SHADOW

PII
S30345502S0023420625030045-1
DOI
10.7868/S3034550225030045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 3
Pages
259-274
Abstract
Transfers in the central Newtonian field to the geostationary orbit are considered under the assumption that low thrust becomes zero when spacecraft with solar panels enters the Earth’s shadow. Using the maximum principle, the two-point boundary value problem is formed. It includes the conditions for optimal intersection of the shadow boundaries, the so called jump conditions in conjugate variables. Then the influence of jump conditions on the two-point boundary value problem solutions is investigated. Calculations for the flights of spacecraft with initial mass 5550 kg and thrust 0.55 N (initial acceleration 0.1 mm/s) from the initial orbit with inclination 13° and the height of perigee 9.2 Mm and of apogee 76.8 Mm were done. They showed that if the argument of pericenter is equal to 0° and the longitude of the ascending node Ω = 180°, the difference in the propellant cost for two trajectories – with or without taking into account the jump conditions – does not exceed 0.15% (in comparison with “nominal” trajectories, i.e., transfers without zeroing the thrust), and may be less than 0.01% for some values of initial time. For other values of Ω, the difference may be greater than 30%. It was discovered also that the two-point boundary value problem may have several solutions. They differ from each other by the set of orbits crossing the Earth’s shadow.
Keywords
Date of publication
05.01.2026
Year of publication
2026
Number of purchasers
0
Views
22

References

  1. 1. Shirazi A., Ceberio J., Lozano J.A. Spacecraft trajectory optimization: A review of models, objectives, approaches and solutions // Progress in Aerospace Sciences. 2018. V. 102. P. 76–98.
  2. 2. Graham K.F., Rao A.V. Minimum-Time Trajectory Optimization of Low-Thrust Earth-Orbit Transfers with Eclipsing // J. Spacecraft and Rockets. 2016. V. 53. Iss. 2. P. 289–303. https://doi.org/10.2514/1.A33416
  3. 3. Wang Y., Topputo F. Indirect Optimization for Low-Thrust Transfers with Earth-Shadow Eclipses // Advances in the Astronautical Sciences AAS/AIAA Spaceflight Mechanics. 2021. V. 176.
  4. 4. Поширяли Л.С., Болтанский В.Г., Гомерсон Р.В. и др. Математическая теория оптимальных процессов. М.: Наука, 1976.
  5. 5. Ferrier Ch., Epenoy R. Optimal control for engines with electro-ionic propulsion under constraint of eclipse // Acta Astronautica. 2001. V. 48. Iss. 4. P. 181–192. https://doi.org/10.1016/S0094-5765 (00)00158-2
  6. 6. Woollands R., Taheri E. Optimal Low-Thrust Gravity Perturbed Orbit Transfers with Shadow Constraints // The 2019 AAS/AIAA Astrodynamics Specialist Conference. Portland, Maine. 2019.
  7. 7. Cerf M. Fast Solution of Minimum-Time Low-Thrust Transfer with Eclipses // Proc. Institution of Mechanical Engineers. Part G: J. Aerospace Engineering. 2019. V. 233. Iss. 7. P. 2699–2714. https://doi.org/10.1177/0954410018785971
  8. 8. Pontani M., Corallo F. Optimal Low-Thrust Lunar Orbit Transfers with Shadowing Effect Using a Multiple-Arc Formulation // Acta Astronautica. 2022. V. 200. Iss. 11. P. 549–561.
  9. 9. Pontani M., Corallo F. Optimal Low-Thrust Earth Orbit Transfers with Eclipses Using Indirect Heuristic Approaches // J. Guidance, Control and Dynamics. 2024. V. 47. Iss. 5. P. 857–873. https://doi.org/10.2514/1.G007797
  10. 10. Ахметшин Р.З. Плоская задача оптимального перелета космического аппарата с малой тягой с высокоэллиптической орбиты на геостационар // Космич. исслед. 2004. Т. 42. № 3. С. 248–259; Akhmetshin R.Z. Planar Problem of an Optimal Transfer of a Low-Thrust Spacecraft from High-Elliptic to Geosynchronous Orbit. Cosmic Research. 2004. V. 42. Iss. 3. P. 238–249.
  11. 11. Ахметшин Р.З. Многовитковые перелеты на геостационарную орбиту с обнулением малой тяги в области тени // Космич. исслед. 2020. Т. 58. № 4. С. 321–330. https://doi.org/10.31857/S0023420620040019; Akhmetshin R.Z. Multiorbit Transfers to a Geostationary Orbit with Switching Low Thrust Off in the Shadow Region // Cosmic Research. 2020. V. 58. Iss. 4. P. 285–294). https://doi.org/10.1134/S0010952520040012
  12. 12. Ахметшин Р.З. Влияние возмущений при многовитковых перелетах на геостационарную орбиту // Космич. исслед. 2021. Т. 59. № 5. С. 377–384. https://doi.org/10.31857/S0023420621050010; Akhmetshin R.Z. The Influence of Disturbances during Multiturn Transfer to a Geostationary Orbit // Cosmic Research. 2021. V. 59. Iss. 5. P. 328–334). https://doi.org/10.1134/S0010952521050014
  13. 13. Петухов В.Г. Оптимизация многовитковых перелетов между некомпланарными эллиптическими орбитами // Космич. исслед. 2004. Т. 42. № 3. С. 260–279; Petukhov V.G. Optimization of multi-orbit transfers between noncoplanar elliptic orbits // Cosmic Research. 2004. V. 42. Iss. 3. P. 250–268
  14. 14. Петухов В.Г. Квазиоптимальное управление с обратной связью для многовиткового перелета с малой тягой между некомпланарными эллиптической и круговой орбитами // Космич. исслед. 2011. Т. 49. № 2. С. 128–137; Petukhov V.G. Quasioptimal control with feedback for multiorbit low-thrust transfer between noncoplanar elliptic and circular orbits // Cosmic Research. 2011. V. 49. Iss. 2. P. 121–130.
  15. 15. Caillau J.B., Gregaud J., Noailles J. 3D Geosynchronous Transfer of a Satellite: Continuation on the Thrust // J. Optimization Theory and Applications. 2003. V. 118. Iss. 3. P. 541–565.
  16. 16. Ким В.П., Гинздор Р.Ю., Громичко Д.П. и др. Разработка стационарного плазменного двигателя СПД-100Вт с повышенной тягой // Космич. исслед. 2019. Т. 57. № 5. С. 323–331. https://doi.org/10.1134/S0023420619050030
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library