Президиум РАНКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

Классификация изолированных суббурь при учете условий генерации и характеристик фаз

Код статьи
S0023420625010087-1
DOI
10.31857/S0023420625010087
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 63 / Номер выпуска 1
Страницы
79-88
Аннотация
Выполнена нейросетевая классификация изолированных суббурь, с учетом признаков, характеризующих особенности генерации различных суббуревых фаз. Для этого были выбраны следующие классификационные признаки: продолжительность фазы зарождения, фазы развития, фазы восстановления и длительность всей суббури в целом, а также особенности поведения компоненты Bz межпланетного магнитного поля (ММП). Под последним признаком подразумевается поворот компоненты Bz ММП к югу, который определяет начало фазы зарождения суббури. Эти признаки приняты в качестве входных рядов для создаваемых самообучающихся нейросетевых моделей. Результатом работы классификационных нейросетей является формирование графических образов набора указанных классификационных признаков, каждый из которых содержит информацию о продолжительности фаз рассматриваемых суббурь. Классификационные нейросетевые эксперименты позволяют разделить суббури на пять классов. Физические особенности выделенных классов заключаются в причинно-следственных связях продолжительности суббуревых фаз с параметрами солнечного ветра и особенностями ММП.
Ключевые слова
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
14

Библиография

  1. 1. Бархатов Н.А., Воробьев В.Г., Ревунов С.Е., Ягодкина О.И. Проявление динамики параметров солнечного ветра на формирование суббуревой активности // Геомагнетизм и аэрономия. 2017. Т. 57. № 3. С. 273–279.
  2. 2. Бархатов Н.А., Громова Л.И., Дремухина Л.А. и др. Учет энергетического бюджета магнитосферы в задаче классификации источников магнитосферной активности // Известия Российской Академии наук. Серия физическая. 2006. Т. 70. № 10. C. 1535–1537.
  3. 3. Воробьев В.Г., Ягодкина О.И., Антонова Е.Е., Зверев В.Л. Влияние параметров плазмы солнечного ветра на интенсивность изолированных магнитосферных суббурь // Геомагнетизм и аэрономия. 2018. Т. 58. № 3. С. 311–323.
  4. 4. Vorobjev V.G., Antonova E.E., Yagodkina O.I. How the intensity of isolated substorms is controlled by the solar wind parameters // Earth, Planets and Space. 2018. V. 70. Iss. 148. https://doi.org/10.1186/s40623-018-0922-5
  5. 5. Lynch B., Zurbuchen T., Fisk L. et al. Internal structure of magnetic clouds: Plasma and composition // J. Geophys. Res. 2002. V 08. Iss. A6. Art.ID. 1239.
  6. 6. Newell P.T., Sotirelis T., Liou K. et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables // J. Geophys. Res. 2007. V. 112. Art.ID. A01206.
  7. 7. Crooker N.U., Kahler S.W., Gosling J.T. et al. Evidence in magnetic clouds for systematic open flux transport on the Sun // J. Geophys. Res. 2008. V. 113. Art.ID. A12107. https://doi.org/10.1029/2008JA013628
  8. 8. Kilpua E.K.J., Li Y., Luhmann J.G. et al. On the relationship between magnetic cloud field polarity and geoeffectiveness // Ann. Geophys. 2012. V. 30. P. 1037–1050. https://doi.org/10.5194/angeo-30-1037-2012
  9. 9. Бархатов Н.А., Воробьев В.Г., Ревунов С.Е. и др. Суббуревая активность и ориентация фронта ударной волны межпланетного магнитного облака // Геомагнетизм и аэрономия. 2019. Т. 59. № 4. С. 427–436.
  10. 10. Бархатов Н.А., Ревунов С.Е. Нейросетевая классификация разрывов параметров космической плазмы // Солнечно-земная физика. 2010. Вып. 14(127). С. 42–51.
  11. 11. Barkhatov N.A., Vorobjev V.G., Revunov S.E. et al. Neural network classification of substorm geomagnetic activity caused by solar wind magnetic clouds // J. Atmospheric and Solar–Terrestrial Physics. 2020. V. 205. Art.ID. 105301.
  12. 12. Бархатов Н.А., Воробьев В.Г., Ревунов С.Е. и др. Нейросетевая классификация причинно-следственной связи суббуревой активности со структурными элементами магнитных облаков солнечного ветра // Известия Российской Академии наук. Серия физическая. 2022. Т. 86. № 3. С. 329–334.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека