RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

ANALYSIS OF LOW-THRUST SATELLITE TOUR STRATEGY IN THE JUPITER SYSTEM

PII
S30345502S0023420625050031-1
DOI
10.7868/S3034550225050031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 5
Pages
482-500
Abstract
A new method for designing a Tisserand graph with low-thrust between gravity assists is proposed. The motion of a spacecraft is considered in the context of the circular restricted three-body problem and the zero-radius sphere of influence model, based on conjugate conic sections. Simple control algorithms for changing the semi-major axis and eccentricity are used for low-thrust maneuvers. The analysis of the proposed control algorithms is carried out. The effectiveness of the proposed technique is shown. Examples of effective low-thrust spacecraft maneuvering strategies in the Jupiter satellite system for transfer to the orbits of Europa, Ganymede, and Calisto have been obtained.
Keywords
Date of publication
07.01.2026
Year of publication
2026
Number of purchasers
0
Views
31

References

  1. 1. Campagnola S., Buffington B.B., Lam T. et al. Tour design techniques for the Europa Clipper mission // J. Guidance, Control, and Dynamics. 2019. V. 42. Iss. 12. P. 2615–2626.
  2. 2. Martynov M.B., Merkulov P.V., Lomakin I.V. et al. Advanced Russian mission Laplace-P to study the planetary system of Jupiter: scientific goals, objectives, special features and mission profile // Solar System Research. 2017. V. 51. P. 555–562.
  3. 3. Yang H., Hu J., Bai X. et al. Review of trajectory design and optimization for Jovian system exploration // Space: Science & Technology. 2023. V. 3. Art.ID. 0036.
  4. 4. Tisserand F.F. Traité de Méchanique Céleste. V. 4. Paris: Gauthier-Villars et fils, 1896. P. 203–205.
  5. 5. Ross S.D., Koon W.S., Lo M.W. et al. Design of a multi-moon orbiter // Advances in the Astronautical Sciences. 2003. V. 114. Iss. 1. P. 669–684.
  6. 6. Strange N.J., Longuski J.M. Graphical method for gravity-assist trajectory design // J. Spacecraft and Rockets. 2002. V. 39. Iss. 1. P. 9–16.
  7. 7. Campagnola S., Strange N.J., Russell R.P. A fast tour design method using non-tangent v-infinity leveraging transfer // Celestial Mechanics and Dynamical Astronomy. 2010. V. 108. P. 165–186.
  8. 8. Strange N.J., Campagnola S., Russell R.P. Leveraging flybys of low mass moons to enable an Enceladus orbiter // Advances in the Astronautical Sciences. 2009. V. 135. Iss. 3. P. 2207–2225.
  9. 9. Woolley R.C., Scheeres D.J. Applications of v-infinity leveraging maneuvers to endgame strategies for planetary moon orbiters // J. Guidance, Control, and Dynamics. 2011. V. 34. Iss 5. P. 1298–1310.
  10. 10. Campagnola S., Buffington B.B., Petropoulos A.E. Jovian tour design for orbiter and lander missions to Europa // Acta Astronautica. 2014. V. 100. P. 68–81.
  11. 11. Takubo Y., Landau D., Anderson B. Automated tour design in the Saturnian system // Celestial Mechanics and Dynamical Astronomy. 2024. V. 136. Iss. 1. Art. ID. 8.
  12. 12. Strange N.J., Landau D.F., Longuski J.M. et al. Design of Initial Inclination Reduction Sequence for Uranian Gravity-Assist Tours // Proc. AAS/AIAA Astrodynamics Specialist Conference. 2013.
  13. 13. Campagnola S., Boutonnet A., Schoenmeckers J. et al. Tisserand-leveraging transfers // J. Guidance, Control, and Dynamics. 2014. V. 37. Iss. 4. P. 1202–1210.
  14. 14. Casalino L., Colasurdo G., Pastrone D. Optimal low-thrust escape trajectories using gravity assist // J. Guidance, Control, and Dynamics. 1999. V. 22. Iss. 5. P. 637–642.
  15. 15. Vasile M., Campagnola S. Design of low-thrust gravity assist trajectories to Europa // J. British Interplanetary Society. 2009. V. 62. Iss. 1. P. 15–31.
  16. 16. Strange N., Landau D., Hofer R. et al. Solar electric propulsion gravity-assist tours for Jupiter missions // AIAA/AAS Astrodynamics Specialist Conference. 2012. Art.ID. 4518.
  17. 17. Sidhoum Y., Oguri K. Low-thrust trajectory design for icy moons orbiters using multi-body techniques // Celestial Mechanics and Dynamical Astronomy. 2024. V. 136. Iss. 6. P. 1–28.
  18. 18. Лебедев В.Н. Расчет движения космического аппарата с малой тягой. М.: ВЦ АН СССР, 1968. Т. 5. 108 с.
  19. 19. Гродовский Г.Л., Иванов Ю.Н., Токарев В.В. Механика космического полета с малой тягой. М.: Наука, 1966. 680 с.
  20. 20. Edelbaum T.N. Propulsion requirements for controllable satellites // Ars Journal. 1961. V. 31. Iss. 8. P. 1079–1089.
  21. 21. Edelbaum T.N. Optimum low-thrust rendezvous and station keeping // AIAA Journal. 1964. V. 2. Iss. 7. P. 1196–1201.
  22. 22. Burt E.G.C. On space manoeuvres with continuous thrust // Planetary and Space Science. 1967. V. 15. Iss. 1. P. 103–122.
  23. 23. Pollard J.E. Simplified Analysis of Low-Thrust Orbital Maneuvers. Aerospace Report No. TR-2000(8565)-10. 2000. 35 p.
  24. 24. Di Carlo M., Vasile M. Analytical solutions for low-thrust orbit transfers // Celestial Mechanics and Dynamical Astronomy. 2021. V. 133. Iss. 7. Art.ID. 33.
  25. 25. Голубев Ю.Ф., Грушевский А.В., Корянов В.В. и др. Универсальное свойство интеграла Якоби для гравитационных маневров в Солнечной системе // Косм. исслед. 2020. Т. 58. № 4. C. 312–320.
  26. 26. Голубев Ю.Ф., Грушевский А.В., Корянов В.В. и др. Адаптивные методы построения перелетов в системе Юпитера с выходом на орбиту спутника галллеевой Луны // Астрономический вестник. Исследования Солнечной системы. 2020. Т. 54. № 4. C. 349–359.
  27. 27. Murray C.D., Dermott S.F. Solar system dynamics. Cambridge university press, 1999. 608 p.
  28. 28. Labunsky A.V., Papkov O.V., Sukhanov K.G. Multiple Gravity Assist Interplanetary Trajectories. Newark, NJ: Gordon and Breach Science Publishers, 1998.
  29. 29. Охощанский Д.Е. Исследование движения в центральном поле под действием постоянного касательного ускорения // Косм. исслед. 1964. Т. 2. № 6. C. 817–842.
  30. 30. Spitzer A. Novel orbit raising strategy makes low thrust commercially viable // IEPC Paper. 1995. P. 95–212.
  31. 31. Pollard J.E. Simplified approach for assessment of low-thrust elliptical orbit transfers // Proc. 25th International Electric Propulsion Conference. Cleveland, OH, USA, 1997. P. 97–160.
  32. 32. Петрюков В.Г. Оптимизация многовитковых перелетов между некомпланарными эллиптическими орбитами // Косм. исслед. 2004. Т. 42. № 3. C. 260–279.
  33. 33. Kechichian J.A. Optimum thrust pitch profiles for certain orbit control problems // J. Spacecraft and Rockets. 2003. V. 40. Iss. 2. P. 253–259.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library