RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

Numerical simulation of a 3U-CubeSat orbit maintenance using electrothermal engine and magnetic attitude control system

PII
S0023420625020043-1
DOI
10.31857/S0023420625020043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 2
Pages
169-178
Abstract
The study focuses on performing orbit maintenance for a 3U-CubeSat using an electrothermal engine and a simple active magnetic attitude control system. The satellite is equipped with magnetorquers and a magnetometer. As such, it cannot maintain the engine axis attitude along the tangential direction for orbit maintenance. Instead, by realizing a constant dipole moment and damping, attitude along the geomagnetic induction vector is constructed. This attitude is close to tangential on a sun-synchronous orbit near the equator. Numerical simulation of the satellite motion is performed showing capability to provide simple and reliable orbit maintenance. Thrust parameters in uncontrolled motion are analyzed.
Keywords
Date of publication
03.11.2025
Year of publication
2025
Number of purchasers
0
Views
75

References

  1. 1. Ovchinnikov M.Y., Roldugin D.S. A survey on active magnetic attitude control algorithms for small satellites // Progress in Aerospace Sciences. 2019. V. 109. Art. ID. 100546. https://doi.org/10.1016/j.paerosci.2019.05.006
  2. 2. Searcy J.D., Pernicka H.J. Magnetometer-Only Attitude Determination Using Novel Two-Step Kalman Filter Approach // J. Guidance, Control, and Dynamics. 2012. V. 35. Iss. 6. P. 1693–1701.https://doi.org/10.2514/1.57344
  3. 3. Psiaki M.L. Global Magnetometer-Based Spacecraft Attitude and Rate Estimation // J. Guidance, Control, and Dynamics. 2004. V. 27. Iss. 2. P. 240–250.
  4. 4. Abdelrahman M., Park S.-Y. Integrated attitude determination and control system via magnetic measurements and actuation // Acta Astronautica. 2011. V. 69. Iss. 3–4. P. 168–185. https://doi.org/10.1016/J.actaastro.2011.03.010
  5. 5. Буланов Д.М., Сазонов В.В. Исследование эволюции вращательного движения спутника Фотон М-2 // Косм. исслед. 2020. Т. 58. № 4. С. 291–304. https://doi.org/10.31857/S0023420620040032
  6. 6. Абрашкин В.И., Воронов К.Е., Дорофеев А.С. и др. Определение вращательного движения малого космического аппарата Аист-2Д по данным магнитных измерений // Косм. исслед. 2019. Т. 57. № 1. С. 61–73. https://doi.org/10.1134/S0023420619010011
  7. 7. Крамлих А.В., Николаев П.Н., Рылько Д.В. Бортовой двухэтапный алгоритм определения ориентации наноспутника SAMSAT-ION // Гироскопия и навигация. 2023. Т. 31. № 2. С. 65–85.
  8. 8. Ovchinnikov M.Y., Roldugin D.S., Penkov V.I. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation // Acta Astronautica. 2012. V. 77. P. 48–60. https://doi.org/10.1016/j.actaastro.2012.03.001
  9. 9. Lovera M., Astolfi A. Spacecraft attitude control using magnetic actuators // Automatica. 2004. V. 40. Iss. 8. P. 1405–1414. https://doi.org/10.1016/j.automatica.2004.02.022
  10. 10. Celani F. Robust three-axis attitude stabilization for inertial pointing spacecraft using magnetorquers // Acta Astronautica. 2015. V. 107. P. 87–96. https://doi.org/10.1016/j.actaastro.2014.11.027
  11. 11. Wisniewski R. Linear Time-Varying Approach to Satellite Attitude Control Using Only Electromagnetic Actuation // J. Guidance, Control, and Dynamics. 2000. V. 23. Iss. 4. P. 640–647. https://doi.org/10.2514/2.4609
  12. 12. Okhitina A., Roldugin D., Tkachev S. Application of the PSO for the construction of a 3-axis stable magnetically actuated satellite angular motion // Acta Astronautica. 2022. V. 195. P. 86–97. https://doi.org/10.1016/J.ACTAASTRO.2022.03.001
  13. 13. Сарычев В.А., Сазонов В.В. Оптимальные параметры пассивных систем ориентации спутников // Косм. исслед. 1976. Т. 14. № 2. С. 198–208.
  14. 14. Сарычев В.А., Овчинников М.Ю. Движение спутника с постоянным магнитом относительно центра масс // Косм. исслед. 1986. Т. 24. № 4. С. 527–543.
  15. 15. Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наукова Думка, 1984. 187 с.
  16. 16. Guerman A.D., Ivanov D.S., Roldugin D.S. et al. Orbital and Angular Dynamics Analysis of the Small Satellite SAR Mission INFANTE // Cosmic Research. 2020. V. 58. Iss. 3. P. 206–217. https://doi.org/10.1134/S0010952520030016
  17. 17. ГОСТ Р 25645.166–2004. Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли. М.: ИПК Издательство стандартов, 2004. 24 с.
  18. 18. Alken P., Thébault E., Beggan C.D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. 2021. V. 73. Iss. 1. Art. ID. 49. https://doi.org/10.1186/s40623–020–01288-x
  19. 19. Иванов Д.С., Овчинников М.Ю., Ролдугин Д.С. и др. Программный комплекс для моделирования орбитального и углового движения спутников // Математическое моделирование. 2019. Т. 31. № 12. С. 44–56. https://doi.org/10.1134/S0234087919120049
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library