RAS PresidiumКосмические исследования Cosmic Research

  • ISSN (Print) 0023-4206
  • ISSN (Online) 3034-5502

Statistics of solar EUV jets

PII
S0023420625010042-1
DOI
10.31857/S0023420625010042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 1
Pages
38-49
Abstract
Collimated ejecta of matter, otherwise known as jets, are observed in large numbers in the chromosphere and lower corona of the Sun, and are of great interest in relation to their possible role for the transport of matter and energy in the solar atmosphere. These jets are subdivided into several groups characterized by different formation mechanisms and substantial variation of their characteristics. In order to distinguish separate groups of jets and identify them with respective formation mechanisms, we performed a statistical study of the full ensemble of solar extreme ultraviolet (EUV) jets using observations from the Solar Dynamics Observatory (SDO) in the 171, 193, and 304 Å channels. We identified a total of 212 such events, of which 26 % were classified as linear jets, probably generated by magnetoacoustic shocks, and 30 % as helical jets, representing small-scale filament eruptions. We found that these two groups differ significantly in their major dynamic characteristics (maximum height, initial velocity, and lifetime), as well as in their widths that are closely related to the underlying magnetic field structure, while helical jets were also shown to be much more frequently associated with the presence of hot coronal component. At the same time, we found a third class of jets with intermediate characteristics and unknown formation mechanism, requiring further study.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Shen Y. Observation and modelling of solar jets // Proc. the Royal Society A. 2021. V. 477. Iss. 2246. Art.ID20200217. https://doi.org/10.1098/rspa.2020.0217.
  2. 2. De Pontieu B., McIntosh S.W., Carlsson M. et al. The origins of hot plasma in the solar corona // Science. 2011. V. 331. Iss. 6013. P. 55–58. https://doi.org/10.1126/science.1197738.
  3. 3. Loboda I.P., Bogachev S.A. Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations // Astron. Astrophys. 2017. V. 597. Iss A78.0. P. 1963–1980. https://doi.org/10.1051/0004-6361/201527559.
  4. 4. Wang H. Comparison of Hα and He II λ304 Macrospicules // The Astrophysical J. 1998. V. 509. Iss. 1. Art.ID461. https://doi.org/10.1086/306497.
  5. 5. Skogsrud H., Rouppe van der Voort L., De Pontieu B. et al. On the temporal evolution of spicules observed with IRIS, SDO, and Hinode // The Astrophysical J. 2015. V. 806. Iss. 2. Art.ID170. https://doi.org/10.1088/0004-637X/806/2/170.
  6. 6. Sterling A.C. Solar spicules: a review of recent models and targets for future observations // Solar Physics. 2000. V. 196. P. 79–111. https://doi.org/10.1023/A:1005213923962.
  7. 7. De Pontieu B., McIntosh S., Hansteen V.H. et al. A tale of two spicules: the impact of spicules on the magnetic chromosphere // Publications of the Astronomical Society of Japan. 2007. V. 59. Iss. sp3. P. S655-S652. https://doi.org/10.1093/pasj/59.sp3.S655.
  8. 8. Pereira T.M.D., De Pontieu B., Carlsson M. Quantifying spicules // The Astrophysical J. 2012. V. 759. Iss. 1. Art.ID18. https://doi.org/10.1088/0004-637X/759/1/18.
  9. 9. Raouafi N.E., Patsourakos S., Pariat E. et al. Solar coronal jets: observations, theory, and modeling // Space Science Reviews. 2016. V. 201. Art.ID1–53. https://doi.org/10.1007/s11214-016-0260-5.
  10. 10. Moore R.L., Cirtain J.W., Sterling A.C. et al. Dichotomy of solar coronal jets: standard jets and blowout jets // The Astrophysical J. 2010. V. 720. Iss. 1. Art.ID757. https://doi.org/10.1088/0004-637X/720/1/757.
  11. 11. Moore R.L., Sterling A.C., Falconer D.A. et al. The cool component and the dichotomy, lateral expansion, and axial rotation of solar X-ray jets // The Astrophysical J. 2013. V. 769. Iss. 2. Art.ID134. https://doi.org/10.1088/0004–637X/769/2/134.
  12. 12. Bohlin J.D., Vogel S.N., Purcell J.D. et al. A newly observed solar feature-Macrospicules in He II 304 A // Astrophysical J. 1975. V. 197. Pt. 2. P. L133–L135. https://doi.org/10.1086/181794.
  13. 13. Pereira T.M.D., De Pontieu B., Carlsson M. et al. An interface region imaging spectrograph first view on solar spicules // The Astrophysical J. Letters. 2014. V. 792. Iss. 1. Art.ID L15. https://doi.org/10.1088/2041–8205/792/1/L15.
  14. 14. Loboda I.P., Bogachev S.A. What is a Macrospicule? // Astrophys. J. 2019. V. 871. Iss. 2. Art.ID230. https://doi.org/10.3847/1538–4357/aafa7a.
  15. 15. Loboda I.P., Bogachev S.A. A statistical study of linear jets in the low solar corona // Astronomical and Astrophysical Transactions. 2019. V. 31. Iss. 2. P. 199–208.
  16. 16. Bennett S.M., Erdélyi R. On the statistics of macrospicules // The Astrophysical J. 2015. V. 808. Iss. 2. Art.ID135. https://doi.org/10.1088/0004-637X/808/2/135.
  17. 17. Kiss T.S., Gyenge N., Erdélyi R. Systematic variations of macrospicule properties observed by SDO/AIA over half a decade // The Astrophysical J. 2017. V. 835. Iss. 1. Art.ID47. https://doi.org/10.3847/1538-4357/aa5272.
  18. 18. Lemen J.R., Title A.M., Akin D.J. et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO) // Solar Physics. 2012. V. 275. P. 17–40. https://doi.org/10.1007/s11207-011-9776-8.
  19. 19. Loboda I., Reva A., Bogachev S. et al. Separating He II and Si XI Emission Components in Off-limb 304 Å Observations // Solar Physics. 2023. V. 298. Iss. 11. Art.ID136. https://doi.org/10.1007/s11207-023-02230-6.
  20. 20. Boerner P.F., Testa P., Warren H. et al. Photometric and thermal cross-calibration of solar EUV instruments // Solar Physics. 2014. V. 289. P. 2377–2397. https://doi.org/10.1007/s11207-013-0452-z.
  21. 21. Bogachev S.A., Loboda I.P., Reva A.A. et al. Difference in the Characteristics of Solar Macrospicules at Low and High Latitudes // Astron. Lett. 2022. V. 48. Iss. 1. P. 47–54. https://doi.org/10.1134/S1063773722010029.
  22. 22. Loboda I.P., Bogachev S.A. Quiescent and eruptive prominences at solar minimum: a statistical study via an automated tracking system // Solar Physics. 2015. V. 29. https://doi.org/10.1007/s11207-015-0735-7.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library