Согласно распространенным представлениям, магнитосфера защищает атмосферу планеты от эрозии, вызванной солнечным ветром. Ранее нами было показано, что во время геомагнитных инверсий, когда магнитное поле ослабевает примерно до 10 % от нынешнего, его защитная функция остается эффективной. Этот вывод был получен для спокойных периодов солнечной активности. Однако геомагнитная инверсия может длиться тысячи лет, в течение которых может произойти множество экстремальных событий, в частности, изменения солнечных параметров, таких как давление солнечного ветра, экстремальное ультрафиолетовое излучение (EUV). При высоком EUV-потоке в верхних слоях атмосферы Земли увеличиваются концентрации азота и кислорода, а также их потери. В настоящей работе рассмотрены наиболее значимые механизмы диссипации тяжелых ионов из атмосферы Земли и оценены их потери в рамках полуэмпирической модели. Показано, что слабое геомагнитное поле и сильная солнечная активность приводят к смене доминирующего механизма диссипации и к значительным атмосферным потерям сравнительно легких изотопов.
Исследуется радиационная опасность на Земле от галактических и солнечных космических лучей при прохождении их через современную и разреженную (в результате множественных инверсий) атмосферу во время солнечных протонных событий и в момент геомагнитной инверсии. Полагается, что в процессе инверсии геомагнитное поле ослабевает и принимает осесимметричную квадрупольную конфигурацию. Показано, что в случае однократной инверсии, когда атмосфера не успевает измениться, мощности доз радиации увеличиваются только на низких широтах и идентичны современному радиационному уровню у полюсов. Однако, в период множественных инверсий, когда атмосфера разрежена, уровень радиации в момент инверсии на поверхности Земли повышается, в среднем, в два раза, по сравнению с современным уровнем на всех широтах, что может влиять на биосферу.
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation