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Формулируется задача автономного управления поступательным движением космического 
аппарата в окрестности фокуса гравитационной линзы Солнца. Поставленная задача решается 
методом машинного обучения с подкреплением с использованием современных стохастических 
численных методов. Исследуются затраты характеристической скорости на нацеливание на 
фокусную линию удаленного протяженного источника, финальная точность нацеливания 
и качество работы функции управления. Результаты исследования приводятся для различных 
форм состояния и наблюдения: 1) положение и скорость; 2) зашумленные положение и скорость; 
3) изображение кольца Эйнштейна. Сравнивается эффективность работы стратегий управления 
при использовании рекуррентных слоев и полносвязных слоев с входом в виде стека измерений. 
Также рассматривается обучение моделей управления с учетом ошибок исполнения маневров.
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1. ВВЕДЕНИЕ

Человечество стремится расширять грани-
цы наблюдаемого мира. Прошлый век был по-
лон исследований околоземного, окололунно-
го пространства и всех крупных небесных тел 
Солнечной системы. Начало XXI в. ознаменова-
лось изучением малых тел Солнечной системы, 
развертыванием крупных обсерваторий для по-
строения карт Вселенной в различных диапазо-
нах энергий. Следующим логичным шагом в из-
учении окружающего мира станет исследование 
пространства за пределами внутренней области 
Солнечной системы (более 100 а. е. от Солнца) 
и, что особенно интересно, наблюдение далеких 
экзопланет, поиск на них признаков жизни. Та-
кие проекты имеют высокую ценность для всего 
человечества и порождают множество новых за-
дач, которые не встречались для миссий в око-
лоземном пространстве и в рамках внутренней 
области Солнечной системы.

На сегодняшний день только пять мис-
сий были направлены к  внешним областям 

Солнечной системы (Pioneer 10, 11, Voyager 1, 2, 
New Horizons), но ожидается, что в скором вре-
мени это число увеличится. Это связано, с од-
ной стороны, с  совершенствованием косми-
ческих технологий (повышением живучести 
электронных компонентов, более надежны-
ми и  экономичными двигателями малой тяги 
и солнечными парусами), а с другой – с появ-
лением новых результатов физико-математиче-
ских исследований, касающихся внешней об-
ласти Солнечной системы. Например, боль-
шую ценность представляют гелиофизические 
исследования во внешних областях Солнечной 
системы. Здесь можно привести пример разра-
батываемой в Лаборатории прикладной физики 
Университета Джонса Хопкинса (Johns Hopkins 
University Applied Physics Laboratory) миссии 
Interstellar Probe [1], аппарат которой будет снаб-
жен физическими инструментами, отсутству-
ющими на Pioneer и Voyager, для исследования 
гелиосферы и межзвездного пространства. Дру-
гой пример – проект Лаборатории реактивно-
го движения (NASA's Jet Propulsion Laboratory), 
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предполагающий использование солнечной гра-
витационной линзы [2–4] для повышения эф-
фективности телескопов и получения изобра-
жений экзопланет с  большей точностью, чем 
позволяют обычные телескопы на околоземной 
орбите [5]. Проведено множество исследований 
по изучению оптических характеристик солнеч-
ной гравитационной линзы [6–8], разработаны 
методы обработки видимых изображений уда-
ленных объектов (колец Эйнштейна) [9–11]. 
Показано, что телескопы, расположенные в фо-
кусе солнечной гравитационной линзы, начина-
ющемся на расстоянии 550 а. е. от Солнца, спо-
собны предоставить изображения экзопланет 
с разрешением порядка 10 км – точностью, не-
достижимой при использовании стандартных те-
лескопических средств в околоземном простран-
стве [5]. Предварительный анализ такой миссии 
по наблюдению экзопланет включает оценку ее 
осуществимости [12, 13], однако не прорабаты-
вает вопросы, связанные с динамикой космиче-
ского аппарата и синтезом системы навигации, 
наведения и управления.

При подготовке какой-либо миссии во внеш-
ние области Солнечной системы возникает по-
требность в  создании автономной системы 
управления, навигации и наведения, так как по-
добный проект рассчитан на длительное время, 
расстояния между Землей и аппаратом оказыва-
ются велики, сигналы распространяются с суще-
ственными задержками, Солнце может затмевать 
Землю, а в работе аппаратуры могут возникнуть 
различные проблемы. Требуется система управ-
ления и навигации, которая могла бы помочь 
в осуществлении такой миссии.

В настоящее время стремительно развивается 
и вызывает большой интерес раздел приближенно-
го динамического программирования, известный 
как машинное обучение с подкреплением [14–16].  
Обучение с подкреплением рассматривает управ-
ление динамической системой как взаимодей-
ствие агента со средой: агент изменяет состояние 
среды, получает во время обучения за свои дей-
ствия вознаграждение и стремится максимизи-
ровать суммарное вознаграждение за заданный 
период времени. В контексте космических поле-
тов аппарат можно считать средой, программное 
обеспечение для управления – агентом, а возна-
граждением может служить точность попадания 
в определенную область пространства и эконо-
мия затрат топлива. Стратегия управления (ото-
бражение состояния аппарата в  управляющее 
воздействие) параметризуется, параметры опти-
мизируются таким образом, чтобы выполнялось 

уравнение оптимальности Беллмана, или что-
бы вознаграждение, полученное агентом за весь 
полет, было максимальным в среднем по всем 
возможным начальным условиям. Результатом 
обучения является функция управления, кото-
рая способна привести космический аппарат 
в заданную область пространства. Эта функция 
может быть загружена на борт аппарата и при-
меняться в режиме реального полета, используя 
текущее состояние аппарата или оценку этого 
состояния.

За несколько последних лет область обучения 
с подкреплением пополнилась эффективными 
алгоритмами, зарекомендовавшими себя в раз-
ных областях, в том числе и в механике космиче-
ского полета (см. обзор литературы по теме в ра-
боте [17] в разделе Reinforcement learning). Эти 
численные методы основываются на алгоритмах 
приближенного динамического программирова-
ния, методах оптимизации функций с большим 
числом параметров и теории частично наблюда-
емых марковских процессов принятия решений. 
Преимуществом этих методов является суще-
ственное сокращение математических предпо-
ложений и значительный охват возможных ре-
шаемых задач. Примеры их применения пока-
зывают, что стратегии управления, создаваемые 
этими методами, естественным образом способ-
ны отображать навигационные измерения не-
посредственно в управляющие воздействия ми-
нуя фазу навигации и оценки состояния, а также 
адаптироваться к неизвестным параметрам ап-
парата и внешней среды, выходу из строя двига-
телей и ошибке в реактивной тяге [18–21]. Тем 
самым методы обучения с подкреплением вы-
ступают перспективным инструментом проекти-
рования адаптивных автономных систем управ-
ления, навигации и управления.

Ранее была сформулирована методика при-
ближенного решения задачи оптимального 
управления механической системой методами 
обучения с подкреплением [22]. Возникает ин-
терес к применению указанной методики к за-
даче управления аппаратом во внешней области 
Солнечной системы в условиях неопределенно-
сти состояния аппарата и возможности выхода 
из строя управляющих органов движения.

Цель настоящей работы – разработка и иссле-
дование автономного управления для космиче-
ского аппарата, движущегося в области фокуса 
гравитационной линзы Солнца, для получения 
изображений экзопланет или проведения других 
исследований с использованием методов обуче-
ния с подкреплением. Изучается возможность 
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использования видимых в телескоп изображе-
ний удаленных источников света, таких как эк-
зопланеты, звезды, галактики, туманности, для 
расчета управляющих воздействий. Методы об-
учения с подкреплением используются для фор-
мирования законов управления аппаратом по 
оценкам состояния или непосредственно по на-
блюдениям с учетом неопределенности в дви-
жении аппарата и возможности выхода из строя 
двигателей. В настоящей работе исследованию 
подлежат сравнительно простые модели законов 
управления. Оптимизация же архитектуры моде-
лей должна производиться с учетом специфиче-
ских требований к миссии, этот вопрос в данной 
работе не рассматривается, однако полученные 
результаты исследования могут предоставить 
опорные значения характеристик движения для 
более совершенных моделей.

2. ПОСТАНОВКА ЗАДАЧИ  
АВТОНОМНОГО УПРАВЛЕНИЯ 
АППАРАТОМ В ОКРЕСТНОСТИ 

ФОКАЛЬНОЙ ЛИНИИ УДАЛЕННОГО 
ИСТОЧНИКА СВЕТА

Сформулируем задачу автономного управле-
ния движением центра масс космического ап-
парата в фокусе гравитационной линзы Солнца 
удаленного источника. Целью управления явля-
ется перемещение аппарата на фокальную ли-
нию источника.

Сначала поясним некоторые термины гра-
витационного линзирования, которые будут 
использоваться в дальнейшем. Рассмотрим то-
чечный источник света, расположенный на не-
котором достаточно большом расстоянии от 
Солнечной системы, чтобы пучок света можно 
было считать параллельным. Линия, проходящая 

через источник и Солнце, называется фокальной 
линией солнечной гравитационной линзы или про-
сто фокальной линией, соответствующей источ-
нику. Под действием гравитационного притя-
жения Солнца лучи света от источника изги-
баются и  фокусируются на фокальной линии 
(рис. 1). Точка на фокальной линии, в которую 
приходит луч света, зависит от расстояния, на 
котором луч проходит мимо Солнца: чем боль-
ше это расстояние, тем дальше от Солнца нахо-
дится точка на фокальной линии. Так как све-
товые лучи проходят на различных расстояни-
ях от Солнца, но не ближе солнечного радиуса, 
весь свет от точечного источника фокусируется 
на геометрическом луче, начинающемся на рас-
стоянии примерно 550 а. е. от Солнца [5]. Протя-
женные источники света (экзопланеты, звезды, 
галактики, туманности) можно рассматривать 
как состоящие из множества точечных источни-
ков. Каждой точке протяженного источника со-
ответствует своя фокальная линия, поэтому весь 
свет от протяженного источника фокусируется 
не на геометрическом луче, а в некоторой обла-
сти пространства, называемой фокусом солнечной 
гравитационной линзы, соответствующим протя-
женному источнику.

Допустим, в рамках некоторой миссии воз-
никла задача автономной навигации аппарата по 
видимым в телескоп изображениям удаленных 
источников и задача нацеливания на фокальную 
линию солнечной гравитационной линзы. Пусть 
исследователями выбран удаленный источник 
света, по которому будет осуществляться навига-
ция и к фокусу солнечной гравитационной лин-
зы которого будет нацелено управление. В на-
стоящей работе будем предполагать, что фокус, 
соответствующий источнику, имеет вид прямого 
кругового конуса, а под фокальной линией бу-
дем понимать ось этого конуса.

Рис. 1. Схематическое представление искривления лучей света удаленного источника под действием солнечной 
гравитационной линзы
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Пусть космический аппарат в начальный мо-
мент времени находится на расстоянии R0 от 
фокальной линии источника и движется со ско-
ростью V0 параллельно фокальной линии отно-
сительно некоторой квазиинерциальной систе-
мы отсчета, связанной с Солнцем. Предпола-
гая параллельность скорости фокальной линии, 
мы выносим за пределы настоящей работы во-
прос о предварительном выравнивании скоро-
сти и тем самым сокращаем число варьируемых 
параметров.

Ставится задача определения nimp импульсов 
скорости, применяемых через одинаковые ин-
тервалы времени ∆timp, которые через проме-
жуток времени (nimp–1)∆timp приводят аппарат 
на фокальную линию. Каждый импульс скоро-
сти ограничен величиной ∆vmax. Считается, что 
расчет импульсов скорости производится на ос-
новании состояния аппарата, навигационной 
оценки этого состояния или по наблюдениям 
изображения в телескопе.

Будем считать, что движение аппарата меж-
ду импульсами представляет собой равномерное 
и прямолинейное движение. Другими словами, 
внешние силы, действующие на аппарат, счи-
таются пренебрежимо малыми. Это предполо-
жение можно считать разумным по следующим 
причинам. Во-первых, так как расстояние до 
Солнца превышает 550 а. е., ускорение силы при-
тяжения к Солнцу не превышает 1.96 · 10–8 м/с2 = 
= 0.146 км/сут2. Это значит, например, что за 30 
дней ускорение притяжения Солнца сместит ап-
парат не более чем на 65.85 км. Во-вторых, это 
возмущение окажет влияние преимущественно 
на движение вдоль фокальной линии. Для на-
блюдения же удаленного источника определяю-
щим является отклонение от фокальной линии, 
а не вдоль линии.

Сформулируем теперь поставленную выше 
задачу как задачу оптимального управления. 
Динамика механической системы описывается 
уравнениями

 r v v= =, ,0

где r ∈3 – радиус-вектор аппарата, а v ∈3 – 
вектор скорости аппарата в системе координат 
Oxyz, в которой начало O движется равномерно 
и прямолинейно вдоль фокальной линии со ско-
ростью V0, ось Ox направлена вдоль фокальной 
линии от Солнца, а оси Oy и Oz выбраны про-
извольным образом; x r v= ∈[ , ] 

6 образует фазо-
вый вектор аппарата. Движение системы рассма-
тривается на фиксированном интервале време-
ни t T∈[ , ]0 . В моменты t i ti = ∆ imp, i n= … −0 1, , imp , 

к системе прикладываются импульсы скорости, 
выражаемые функцией управления u u x= ∈( ) 

3 
или u u o h= ∈( , ) 

3, в зависимости от того, на ос-
нове какой информации производится управ-
ление – фазового вектора состояния системы x 
или наблюдения o и истории наблюдений h, где 
под наблюдением и историей наблюдений могут 
пониматься оценки фазового вектора или непо-
средственно изображения. Финальный момент 
времени T n t= imp imp∆ . Ограничения на фазовый 
вектор в  процессе перелета не накладывают-
ся. Устанавливаются ограничения на функцию 
управления: | | maxu ≤ ∆v . Множество начальных 
условий Ω0 определяется следующим образом:

	 Ω0 0 0 0 0 0 0 0 0
2

0
2

0
20 0 0 0= = = = + ≤{ [ , ] : [ , , ], [ , , ], }x r v r vy z y z R

Ω0 0 0 0 0 0 0 0 0
2

0
2

0
20 0 0 0= = = = + ≤{ [ , ] : [ , , ], [ , , ], }x r v r vy z y z R .             (1)

Целевым множеством является
Ωtarg = = = = ∈{ [ , ] : [ , , ], [ , , ], , }.x r v r vx v x vx x0 0 0 0 

Целевым функционалом служит расстояние 
в фазовом пространстве до целевого множества 
в конце маневрирования:

 ( ( ), ( )) ,x u⋅ ⋅ = + + +y z v vT T yT zT
2 2 2 2α

где yT , zT  – это y- и z-координаты в момент t = T,  
а  vyT  и  vzT  – это y- и  z-компоненты скорости 
в момент t = T; α – заданный весовой коэффи-
циент нужной размерности.

Итак, ставится задача поиска функции управ-
ления u u x= ( ) или u u o h= ( , ), которая для каждо-
го начального условия x0 0∈ Ω  порождает траек-
торию ( ( ), ( ))x ut t , удовлетворяющую ограничению 
| | maxu ≤ ∆v  и минимизирующую функционал  .

3. ПОСТАНОВКА ЗАДАЧИ ОБУЧЕНИЯ 
С ПОДКРЕПЛЕНИЕМ

Общая методика приближенного решения 
задачи оптимального управления методами об-
учения с подкреплением была ранее сформули-
рована и подробно рассмотрена в работе [22] на 
основе обзора литературы по приложениям ме-
тодов машинного обучения в механике космиче-
ского полета [17].

Для того чтобы решить задачу оптимально-
го управления методом обучения с подкрепле-
нием, необходимо определить понятия теории 
обучения с  подкреплением (состояние среды, 
действие агента, дискретный шаг среды, функ-
ции вознаграждения) в  контексте поставлен-
ной задачи оптимального управления. В рабо-
те [22] эти понятия были рассмотрены для об-
щей задачи оптимального управления, и процесс 
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формулирования задачи обучения с подкрепле-
нием был описан в шести шагах. Рассмотрим эти 
шаги в контексте исследуемой в настоящей ра-
боте задачи управления.

1. Под состоянием среды будем понимать фа-
зовый вектор состояния аппарата s = x. В силу 
автономности системы уравнений движения фа-
зовый вектор однозначно определяет эволюцию 
системы вне зависимости от значения момента 
времени, в который этот вектор задан.

2. На области Ω0 начальных условий x0 опре-
делим равномерное распределение вероятностей 
0, так как не предполагаем никакого приорите-
та одних начальных условий в области Ω0 перед 
другими. Из этого распределения будут генери-
роваться начальные условия в серии эпизодов 
Монте-Карло для моделирования работы функ-
ции управления и эмпирической оценки функ-
ционала. Отметим, что после обучения стратегии 
на этапе ее тестирования или оценки качества, 
распределение начальных условий можно изме-
нить и сделать их приближенными к ожидаемым 
в реальной миссии. В этом случае, впрочем, сле-
дует помнить, что распределение и математи-
ческое ожидание суммарных вознаграждений 
изменятся и оптимальная стратегия для нового 
распределения может отличаться от оптималь-
ной стратегии для исходного распределения.

3. Дискретный шаг среды определим следую-
щим образом:

x x u x x f x′ + ′ ′= + = +k k k k k kt[ , , , ], ( ),0 0 0 1 ∆ imp

где первое равенство означает применение им-
пульса uk на шаге k, k n= … −0 1, , imp , а  второе 
уравнение описывает изменение положения 
и скорости аппарата под действием динамики; 
здесь f – функция правой части уравнений дви-
жения. Второе равенство по сути является ша-
гом метода Эйлера, но оно точно отражает ди-
намику, так как уравнения движения являются 
линейными. Шаг k n= −imp 1 и  состояние xnimp
считаются финальными. Последовательность из 
nimp шагов назовем эпизодом.

4. Функцию вознаграждения определим сле-
дующим образом:

r y z v vk k k y z= − = + + ++ρ ρ ρ α( ) ( ), ( ) .x x x1
2 2 2 2

Суммарное вознаграждение за эпизод равно

R rk
k

n

n= = −
=

−

∑
0

1

0

imp

imp
ρ ρ( ) ( ),x x

то есть улучшению расстояния до целевого мно-
жества за эпизод. Среднее значение именно этой 

величины будет максимизироваться в алгоритме 
обучения с подкреплением.

5. В качестве модели восприятия в настоящей 
работе рассматриваются три варианта. В  пер-
вом варианте наблюдением является фазовый 
вектор аппарата, то есть o = x. Таким образом, 
изучается оптимизация и поведение стратегии 
управления аппаратом в  условиях полной на-
блюдаемости и  абсолютного знания состоя-
ния. Во втором варианте наблюдением выступа-
ет фазовый вектор с шумом, то есть o = x + ξ,  
где ξ ∈ ( , )0 Σ  – ошибка определения состоя-
ния аппарата, которая моделируется как нор-
мально распределенный вектор с нулевым сред-
ним и задаваемой ковариационной матрицей Σ. 
Таким образом, в этом варианте моделируется 
результат процедуры навигации. В третьем ва-
рианте наблюдением o является модель изобра-
жения, поступающего на телескоп. Для моде-
лирования видимого в телескоп изображения, 
получаемого в  результате искривления лучей 
света под действием гравитации Солнца, суще-
ствует множество программных инструментов, 
обзор которых можно найти в статье [23]. В на-
стоящей работе используется адаптированная 
версия программы glafic2 (https://github.com/
oguri/glafic2) [24], так как, в отличие от других 
программ, она находится в открытом доступе, 
а также создана и поддерживается специалистом 
в области гравитационного линзирования. Мо-
дель изображения представляет собой матрицу, 
каждая компонента которой принимает значе-
ния в интервале [0,1] и задается в оттенках серо-
го. На рис. 2 и 3 продемонстрированы примеры 

Рис. 2. Изображение, формируемое glafic2 для аппа-
рата на расстоянии 130 тыс. км от фокальной линии 
и на расстоянии 600 а.е. от Солнца
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изображений, формируемых glafic2 на расстоя-
ниях 130 и 85 тыс. км до фокальной линии со-
ответственно (расстояние до Солнца – 600 а. е.).

6. Остается определить модель управления. 
В данной работе модель управления определяет-
ся с использованием классических для машин-
ного обучения нейросетевых архитектур. Для  
o = x и o = x + ξ в качестве модели управления 
рассматривается нейросетевая модель с одним 
скрытым слоем размера n1  1:

	a A A o b b u a a= + + = ⋅2 1 1 2 1π π π πth( ) , min( , / | |)max∆v , (2)
где a – действие агента; u – управляющее воздей-
ствие; o ∈6 – наблюдение; A1

61π ∈ ×


n , b1
1π ∈n ,  

A2
3 1π ∈ ×



n , b2
3π ∈  – матрицы и векторы опти-

мизируемых параметров. Функция гипербо-
лического тангенса действует на векторы по-
компонентно 1. Верхний индекс π означает, 
что параметры относятся к модели стратегии. 
В результате получается управляющее воздей-
ствие u, по модулю не превосходящее ∆vmax .

Наблюдение-изображение связано с коорди-
натами аппарата, то есть его положением отно-
сительно фокальной линии, но не несет никакой 
информации о скорости движения аппарата. Два 
последовательных наблюдения-изображения, 
взятые в известные моменты времени t1 и t2, не-
сут информацию не только об y- и z-координатах 
в  эти моменты времени (y1, x1) и  (y2, x2), но 

1 Здесь и далее функция гиперболического тангенса выбра-
на как одна из распространенных активационных функций 
в литературе по управлению космическими аппаратами с ис-
пользованием методов обучения с подкреплением. Возможен 
выбор других активационных функций, например ReLU.

и  о  скорости движения ( , ) ( , ) ( , ) / ( )v v v v y y z z t ty z y z1 1 2 2 2 1 2 1 2 1= = − − − 
( , ) ( , ) ( , ) / ( )v v v v y y z z t ty z y z1 1 2 2 2 1 2 1 2 1= = − − − , так как движение яв-

ляется равномерно прямолинейным. Поэтому 
два изображения несут информацию, достаточ-
ную для расчета импульса скорости для нацели-
вания на фокальную линию. В случае наблюде-
ний-изображений рассматриваются две нейросе-
тевые модели управления.

Во-первых, рассматривается модель со стеком 
входных данных

 a A A o o b b u a a= ′ + + = ⋅2 1 1 2 1π π π πth( [ , ] ) , min( , / | |)max∆v 

a A A o o b b u a a= ′ + + = ⋅2 1 1 2 1π π π πth( [ , ] ) , min( , / | |)max∆v ,              (3)
где o ∈n nh w  и  ′ ∈o 

n nh w  – векторы изображе-
ний размера n nh w×  с текущего и предыдущего 
шага; [ , ]o o′ ∈2n nh w  – конкатенация векторов o 
и  ′o , A1

21π ∈ ×


n n nh w, b1
1π ∈n , A2

3 1π ∈ ×


n , b2
3π ∈ .  

В начальный момент времени ′o не определен, 
для определенности этот вектор полагается ну-
левым. Наблюдение в предыдущий момент вре-
мени ′o  играет роль истории наблюдений. Такая 
нейросетевая модель выбрана исходя из следую-
щих соображений. Все элементы матрицы изо-
бражения лежат в пределах от 0 (черный цвет) 
до 1 (белый цвет). Расположение единиц в ма-
трице зависит от положения аппарата относи-
тельно фокальной линии, а количество единиц 
в матрице связано с близостью аппарата к фо-
кальной линии. Следовательно, ожидается, что 
направление и величина импульса связаны ли-
нейными соотношениями с элементами матри-
цы и, возможно, одним нелинейным преобразо-
ванием. Поэтому в качестве нейросетевой архи-
тектуры предлагается рассмотреть полносвязную 
сеть прямого распространения, а не сеть со свер-
точными слоями, применяемую обычно для рас-
познавания образов.

Во-вторых, изучается рекуррентная сеть 
с простым рекуррентным слоем

	 h A o B h c a A A h b bk h k h k h k a a k a a= + + = + +− −th th( ), ( ), , , ,
π π π π π π

1 2 1 1 1 2

h A o B h c a A A h b bk h k h k h k a a k a a= + + = + +− −th th( ), ( ), , , ,
π π π π π π

1 2 1 1 1 2,            (4)
u a ak k kv k n= ⋅ = … −min( , / | |), , , ,max1 1 1∆ imp

где hk
n∈ 1 – скрытое состояние рекуррентной 

сети, являющееся функцией текущего наблюдения 
и предыдущих наблюдений; n1 – свободно выби-
раемый исследователем размер скрытого состоя-
ния; матрицы и векторы  Ah

n n nh wπ ∈ ×


1 ,  Bh
n nπ ∈ ×



1 1,  
bh

nπ ∈ 1,  Aa
n n

,1
2 1π ∈ ×

 , ba
n

,1
2π ∈ , Aa

n
,2

3 2π ∈ ×
 ,   

ba,2
3π ∈  состоят из оптимизируемых параметров; 

n2 – свободно выбираемый исследователем раз-
мер скрытого слоя. Начальное значение скрытого 

Рис. 3. Изображение, формируемое glafic2 для аппа-
рата на расстоянии 85 тыс. км от фокальной линии  
и на расстоянии 600 а.е. от Солнца
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состояния h0 обычно полагается равным нулевому 
вектору.

Рекуррентные нейронные сети изначально 
создавались для обработки числовых последо-
вательностей и зарекомендовали себя в задачах 
обработки временных рядов, естественного язы-
ка, распознавания речи. Они обладают способ-
ностью сохранять память о предыдущих входных 
данных, что позволяет им учитывать историче-
ский контекст при составлении прогнозов. Ре-
куррентные сети могут обрабатывать последова-
тельности произвольной длины. В то же время 
их обучение может быть ресурсоемким по срав-
нению с нейронными сетями прямого распро-
странения, особенно при работе с  длинными 
последовательностями, из-за проблемы исчез-
новения или увеличения градиента выхода сети 
по ее параметрам. Кроме того, рекуррентные 
сети могут испытывать проблемы с регистраци-
ей долгосрочных зависимостей в данных. Впро-
чем, в контексте рассматриваемой задачи, когда 
для расчета величины и направления импульса 
необходимо и достаточно двух наблюдений-изо-
бражений, а эпизод состоит из небольшого чис-
ла шагов, эта проблема не играет большой роли.

Нейронные сети прямого распространения со 
стеком во входных данных обычно проще обучать 
и реализовывать, они не обладают проблемами 
исчезновения или увеличения градиентов, а дан-
ные при их использовании можно обрабатывать 
параллельно. Недостатком их использования ста-
новиться необходимость определения недостаю-
щих векторов наблюдения на первых итерациях. 
Задание вектора наблюдений нулевым вектором 
может приводить к ошибкам прогнозирования 
нейронной сети, учитывая, что нулевое значение 
наблюдения несет в себе содержательную инфор-
мацию (в нашем случае – отсутствие наблюдения 
кольца Эйнштейна). При использовании нейрон-
ных сетей со стеками входных данных исследова-
тели ожидают коррекции поведения системы по-
сле второй итерации.

Перейдем к вопросу оптимизации стратегии. 
В настоящее время наиболее распространенны-
ми методами оптимизации стратегии в случае 
непрерывных множеств состояния и действия 
являются метод градиента глубокой детермини-
рованной стратегии (Deep Deterministic Policy 
Gradient, DDPG) [25], метод асинхронного ис-
полнителя–критика (Asynchronous Advantage 
Actor Critic, A3C) [26], метод оптимизации бли-
жайшей стратегии (Proximal Policy Optimization, 
PPO) [27], а  также эволюционные алгорит-
мы [28, 29]. В  механике космического полета 

хорошо зарекомендовал себя алгоритм PPO. По 
своей сути он является аналогом методов дове-
рительных областей и был разработан для борь-
бы с неустойчивостью процесса обучения, ког-
да небольшое изменение весов нейронной сети 
оказывает сильное влияние на стратегию, что де-
стабилизирует процесс обучения.

В  настоящей работе оптимизация параме-
тров функции управления производится с ис-
пользованием реализации алгоритма PPO 
в рамках известной библиотеки stable-baselines3 
(https://stable-baselines3.readthedocs.io/en/mas-
ter/). Библиотека stable-baselines3 – одна из не-
многих профессиональных и  открытых про-
граммных библиотек с алгоритмами обучения 
с подкреплением, реализованных специалиста-
ми в этой области. Разработка и сопровождение 
библиотеки ведется Немецким центром авиа-
ции и космонавтики (German Aerospace Center, 
DLR), Лабораторией интерактивной робото-
техники (Interactive Robotics Laboratory) в Уни-
верситете Париж–Сакле, на Факультете элек-
тротехники и  компьютерных наук (Electrical 
Engineering and Computer Science) в Калифор-
нийском университете и в Школе вычислитель-
ной техники (School of Computing) в  Универ-
ситете восточной Финляндии. Алгоритм PPO 
требует также задания модели для функции 
ценности. Во всех случаях формы наблюдений 
определим функцию ценности в рамках такой 
же архитектуры, как у модели управления – так 
часто делают в приложениях обучения с подкре-
плением. А именно, для случаев o x=  и o x= + ξ 
возьмем

	 v bvT v v v= + +a A o b2 1 1 2th( ) ,                (5)

где параметры A1
61v n∈ ×

 , b1
1v n∈ , a2

1v n∈ , bv
2 ∈,  

а верхний индекс v означает, что эти параметры от-
носятся к модели функции ценности. В случае на-
блюдения-изображения, когда модель управления 
строится на основе стека входных данных, функ-
цию ценности будем аппроксимировать функцией

v bvT v v v= ′ + +a A o o b2 1 1 2th( [ , ] ) ,

где A1
21v n n nh w∈ ×

 , b1
1v n∈ , a2

1v n∈ , bv
2 ∈. Нако-

нец, если модель управления строится на осно-
ве рекуррентной сети, функцию ценности будем 
аппроксимировать как

h A o B h b a A h bk h
v

k h
v

k h
v

k v
T

v k v vv b= + + = + +− −th th( ), ( ) ,1 1

h A o B h b a A h bk h
v

k h
v

k h
v

k v
T

v k v vv b= + + = + +− −th th( ), ( ) ,1 1

где Ah
v n n nh w∈ ×



1 , Bh
v n n∈ ×



1 1, bh
v n∈ 1, Av

n n∈ ×


2 1,  
bv

n∈ 2, av
T n∈ 2, bv ∈. Параметры n1 и  n2 
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можно выбрать совпадающими с одноименны-
ми параметрами в модели управления.

На момент проведения исследования библи-
отека stable-baselines3 не позволяла создавать 
и обучать модели на основе рекуррентных сетей, 
используемых в настоящей работе. Ответвление 
от основного проекта SB3 Contrib (https://stable-
baselines3.readthedocs.io/en/master/guide/sb3_
contrib.html) имеет реализацию PPO на основе 
архитектуры длинной цепи элементов кратко-
срочной памяти (long short-term memory, LSTM) 
[30]. В настоящем же исследовании предпочте-
ние отдается более простым нейросетевым мо-
делям, поэтому мы адаптировали реализацию 
алгоритма PPO из SB3 Contrib для случая нашей 
рекуррентной сети.

Перейдем к описанию процедуры оптимиза-
ции при использовании алгоритма PPO. Задача 
состоит в оптимизации функционала

J Rθ π θ( ) = ( )( ) |

относительно вектора θ параметров стратегии 
π(θ). Теоретическое математическое ожидание 
в выражении для J(θ) заменяется на выбороч-
ное среднее. Для этого в  соответствии с  рас-
пределением начальных условий (см. пункт 2 
выше) и дискретными шагами (пункт 3) произ-
водится серия испытаний Монте-Карло, агент 
на основании наблюдений (пункт 5) при фик-
сированных значениях параметров θ произво-
дит действия (пункт  6), получает за них воз-
награждения rk (пункт 4) и действует до конца 
эпизода. Так, в серии испытаний получаются 
реализации суммарных вознаграждений R за 
эпизод, их выборочное среднее дает оценку ве-
личины J(θ). Далее, на основании собранных 
данных (состояний, действий, вознаграждений) 
в серии испытаний алгоритм PPO корректиру-
ет параметры θ в сторону повышения значения 
функционала J, и процесс сбора данных повто-
ряется снова. Процесс оптимизации останавли-
вается, когда значение функционала перестает 
увеличиваться.

Поскольку оптимизация параметрической 
функции управления происходит на основе ме-
тодов Монте-Карло и параметры моделей на-
страиваются исходя из опыта взаимодействия 
агента со средой, нет гарантии, что построенное 
управление будет решать поставленную задачу 
для любых начальных данных одинаково эффек-
тивно. Возникает задача оценки качества проек-
тируемой системы управления. В настоящей ра-
боте предлагается оценивать качество с помо-
щью неравенства Хефдинга [31, 22].

Теорема [31]. Пусть X1, …, Xn – независимые 
одинаково распределенные случайные величины, 
для которых выполнено a X bi≤ ≤  с вероятностью 
единица. Тогда для среднего выборочного 

X n Xi
i

n

=
=
∑( / )1

1

 справедлива оценка

P EX X b a n− ≥ −( ) ≤ −( )ε ε( ) exp .2 2 2

Следствие. Если Xi ∈ { , }0 1  имеют распределение 
Бернулли Be( )pA , то

 X p nA− ≥( ) ≤ −( )ε ε2 2 2exp .

Неравенство в утверждении теоремы называется 
неравенством Хефдинга, его удобно записывать 
в виде доверительного интервала:

X b aX= ± − ε( ) с вероятностью не менее 
1 2 2 2− −( )exp .ε n

Это неравенство означает, что, проведя n не-
зависимых измерений случайной величины X, 
ограниченной промежутком [a, b], мы получим, 
что вероятность отклонения среднего выбороч-
ного X  от истинного математического ожида-
ния X  более чем на ε( )b a−  не превосходит 
p n= −2 2 2exp( )ε . Из неравенства Хефдинга сле-
дует, например, что, проведя n = 3800452 изме-
рений случайной величины X, мы получим, что 
вероятность отклонения среднего выборочного 
X  от истинного математического ожидания X  
более чем на 10 3− −( )b a  не превышает p = 0 1. %.  
Следствие из теоремы позволяет оценивать ве-
роятность pA  наступления события A, которое, 
в  зависимости от исхода, может происходить 
или не происходить. В настоящей работе нас 
будут интересовать оценки истинных средних 
промаха по положению мимо фокальной ли-
нии, промаха по скорости, характеристические 
затраты топлива, а также вероятность наступле-
ния события, которое заключается в том, что 
конечный промах по положению больше на-
чального промаха.

Итак, поставлена задача обучения с  под-
креплением – описаны варианты состояния 
среды (космического аппарата) и их началь-
ные значения, действия агента (управляющей 
программы), переход между состояниями, 
функция вознаграждения, модель восприятия, 
а также параметрические модели управления, 
алгоритм их оптимизации и способ оценки их 
качества. Перейдем теперь к решению постав-
ленной задачи.
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4. РЕШЕНИЕ ЗАДАЧИ ОБУЧЕНИЯ 
С ПОДКРЕПЛЕНИЕМ

В  разделе приводятся результаты исследо-
вания затрат характеристической скорости для 
нацеливания на фокусную линию, оценки фи-
нальной точности нацеливания и качества рабо-
ты функции управления.

Случай 1. Наблюдением является  
состояние аппарата

Начнем со случая, когда наблюдением явля-
ется состояние аппарата, то есть o = x. Для опре-
деленности будем полагать, что область началь-
ных условий (1) представляет собой круг радиуса  
R0 = 100 тыс. км. Движение начинается на рас-
стоянии 550 а. е. от Солнца. Эпизод длится  
30 дней, число импульсов nimp = 6, интервал 
между импульсами ∆timp = 5 дней. Импульсы 
ограничим величиной ∆vmax = 100 м/с. Положе-
ние и  скорость аппарата определяются в  без-
размерной системе единиц: единица расстоя-
ния равна 100 тыс. км, единица времени равна 
1 км/с. Весовой коэффициент α в функции воз-
награждения равен единице в безразмерной си-
стеме единиц.

Обучение моделей произведем с  помощью 
реализации метода PPO из библиотеки stable-
baselines3. Число нейронов на скрытом слое в мо-
дели управления (2) и модели функции ценности 
(5) выберем равным n1 = 6. Объем выборки для 
аппроксимации среднего значения функциона-
ла J (опция n_steps) выберем равным 10000. Чис-
ло итераций градиентного метода для коррекции 
весов нейросетевых моделей (опция n_epochs) 
выберем равным 30, а скорость обучения (оп-
ция learning_rate) – 0.001. Обучение будем про-
водить на центральном процессоре и завершим, 
когда число дискретных шагов достигнет 1.5 млн 
(опция total_timesteps). Здесь и в других случаях 
опции подбирались вручную до тех пор, пока не 
начинала наблюдаться “сходимость” параметров 
нейросетевых моделей, которая проявляла себя 
в том, что в среднем значение функционала сна-
чала монотонно росло, а затем переставало изме-
няться. Сходимость наблюдалась в широком ди-
апазоне значений опций. Их оптимизация в на-
стоящей работе не рассматривалась.

Результаты обучения модели управления 
и  функции ценности оказались следующими. 
Оценка среднего суммарного вознаграждения 
выросла со значения –0.3066 на первых итера-
циях до 0.6505 на последней итерации. Заметим, 
что для теоретически оптимальной стратегии, 

которая полностью устраняет невязку по поло-
жению и скорости относительно фокальной ли-
нии и тем самым максимизирует математическое 
ожидание суммарного вознаграждения, среднее 
значение суммарного вознаграждения равно

r
drd r dr

R 2

0

2

0 0

1 20
2

2
3

0 6667
π

ϕ
π

∫∫ ∫= = ≈ . ,

что говорит о близости найденного управления 
к оптимальному. Важно отметить, что точный 
расчет математического ожидания оказался воз-
можным благодаря удачному выбору функции 
вознаграждения, виду суммарного вознагражде-
ния как телескопической суммы вознагражде-
ний за эпизод, и тому, что оптимальное среднее 
суммарное вознаграждение не требует в нашем 
случае определения теоретически оптимального 
управления.

Наличие промаха по положению и  скоро-
сти в конце эпизода объясняется ограниченны-
ми возможностями нейросетевой архитектуры 
и  сходимостью оптимизационной процедуры 
лишь к локальному минимуму функционала, ко-
торый, в свою очередь, тоже оценивается при-
ближенно в серии испытаний Монте-Карло.

Качество полученного управления было про-
тестировано в 3800452 испытаниях Монте-Кар-
ло при равномерном распределении на Ω0 на-
чальных условий. Результаты оценок промаха по 
положению и скорости в конце эпизода, а также 
суммарные затраты характеристической скорости 
приведены в табл. 1. Здесь q0 означает минималь-
ное значение величины из встреченных; q0.25 – ве-
личину, ниже которой находятся 25 % встречен-
ных величин; q0.5 – медиану; q0.75 означает вели-
чину, выше которой находятся 25 % встреченных 
величин; q1 – максимальное значение величи-
ны из встреченных; µ – среднее арифметическое 
всех величин. Из таблицы следует, что в среднем 
промах мимо фокальной линии составляет око-
ло 1215  км, причем худшее значение промаха 
равно примерно 2650 км и намного меньше мак-
симального начального промаха в 100 тыс. км. 
Под промахом по скорости понимается скорость 
в плоскости yz, в среднем она равна ~ 17 м/с, 
а в худшем случае – 30 м/с. Средние затраты ха-
рактеристической скорости равны ~ 51 м/с.

На рис. 4 показаны начальные и конечные про-
махи по положению мимо фокальной линии. Из 
рисунка видно, что почти во всех исходах рассто-
яние до линии уменьшается (почти все точки на-
ходятся под красной линией, отмечающей равные 
начальные и конечные расстояния). Увеличение 
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Таблица 1. Квантили и средние значения распределений промаха по положению ∆rf и скорости ∆vf мимо 
фокальной линии и суммарные за эпизод затраты характеристической скорости u для стратегии, основанной 
на состоянии аппарата

Показатель q0 q0.25 q0.5 q0.75 q1.0 µ

∆rf, км 1.2028 651.8684 1096.0418 1723.1587 2650.0928 1214.8167
∆vf , м/с 0.0125 11.9971 17.4724 21.9254 29.6690 16.8165
u, м/с 0.2695 39.0842 54.1995 65.1141 80.3756 50.9032

расстояния наблюдалось только для исходов с на-
чальным расстоянием до линии до 900 км.

Из неравенства Хефдинга и расчетов следу-
ет, что истинное среднее значение вероятности 
неблагоприятного исхода (увеличение невязки 
по положению по сравнению с начальным зна-
чением невязки) равно 0.007 %  0.1 % с веро-
ятностью не менее 99.9 % и превышает 0.017 %  
с  вероятностью не более 0.05 %. При усло-
вии ∆rf < 100 тыс. км истинное среднее значе-
ние промаха по положению лежит в интервале  
1215  100 км с вероятностью не менее 99.9 % 
Учитывая, что априори ∆v f < 600  м/с, получа-
ем, что истинное среднее значение промаха по 
скорости лежит в интервале 16.8  0.6 м/с с ве-
роятностью не менее 99.9 %. Наконец, так как 
суммарные затраты характеристической скоро-
сти априори не превышают 6 600∆vmax =  м/с, ис-
тинное среднее значение затрат характеристиче-
ской скорости лежит в интервале 50.9  0.6 м/с 
с вероятностью не менее 99.9 %

Случай 2. Наблюдением является оценка  
состояния аппарата

Рассмотрим случай o x= + ξ, где ξ – нормаль-
ный случайный вектор с нулевым математическим 
ожиданием и диагональной матрицей ковариаций 
Σ. Дисперсии по каждой координате, для приме-
ра, выберем равными σr = 10 тыс. км, а по каждой 
компоненте скорости – σv = 0.3 м/с. Параметры 
моделей и опции библиотеки обучения возьмем 
теми же самыми, что и в предыдущем подразделе.

Оценка среднего суммарного вознаграждения 
во время обучения выросла со значения 0.06224 
на первых итерациях до 0.5999 на последней ите-
рации. Это значение меньше, чем в случае o = x 
(0.6505), и является следствием влияния ошибки 
знания состояния.

Качество полученного управления было 
протестировано в  3800452 испытаниях Мон-
те-Карло при равномерном распределении 
на Ω0 начальных условий. Результаты оценок 

Рис. 4. Начальные и конечные расстояния (точки синего цвета) до фокальной линии, полученные в серии испы-
таний Монте-Карло, для стратегии, основанной на состоянии аппарата; красным цветом обозначена линия ра-
венства расстояний
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промаха по положению и  скорости в  конце 
эпизода, а также суммарные затраты характе-
ристической скорости приведены в табл. 2. Из 
таблицы следует, что в среднем промах мимо 
фокальной линии составляет около 5493 км, 
причем худшее значение промаха равно при-
мерно 24716  км. Эти значения в  несколь-
ко раз выше значений, полученных для слу-
чая o = x. Повышение промаха происходит 
вследствие ошибки по положению порядка  
10–20 тыс. км, в результате чего агент не спо-
собен научиться принимать верное решение об 
управляющем воздействии. Средний промах 
по скорости вырос незначительно: 17.8 м/с. 
В худшем случае наблюдался промах по ско-
рости величиной 45.4 м/с. Средние затраты ха-
рактеристической скорости равны приблизи-
тельно 58.9 м/с.

На рис. 5 показаны начальные и конечные 
промахи по положению мимо фокальной ли-
нии. Из рисунка видно, что во всех исходах, 
когда начальное расстояние до линии фокуса 

превышало 20 тыс. км, промах по положению 
в  конце эпизода уменьшался, но до порядка 
20 тыс. км.

Из неравенства Хефдинга и расчетов следу-
ет, что с вероятностью не менее 99.9 % истинное 
среднее значение вероятности неблагоприятно-
го исхода (увеличение невязки по положению по 
сравнению с начальным значением невязки) рав-
но 0.3911 %  0.1 %, истинное среднее значение 
промаха по положению (при условии ∆rf < 100 
тыс. км) равно 5493  100 км, истинное среднее 
значение промаха по скорости равно 17.8  0.6 
м/с, а истинное среднее значение затрат характе-
ристической скорости равно 58.9  0.6 м/с.

Случай 3. Наблюдением является изображение
Рассмотрим теперь случай, когда наблюде-

нием является изображение. В настоящей рабо-
те изображение моделируется с использовани-
ем программной библиотеки гравитационного 
линзирования glafic2. Размеры изображения – 20 

Рис. 5. Начальные и конечные расстояния (точки синего цвета) до фокальной линии, полученные в серии испы-
таний Монте-Карло, для стратегии, основанной на оценке состояния аппарата
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Таблица 2. Квантили и средние значения распределений промаха по положению ∆rf и скорости ∆vf мимо 
фокальной линии и суммарные за эпизод затраты характеристической скорости u для стратегии, основанной 
на оценке состояния аппарата

Показатель q0 q0.25 q0.5 q0.75 q1.0 µ

∆rf, км 1.9677 3319.3015 5155.4847 7297.5143 24715.8587 5492.7378
∆vf , м/с 0.0094 12.4867 18.1932 23.2020 45.3685 17.7810
u, м/с 7.4632 48.6842 60.3028 69.6961 117.7929 58.8619
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пикселей в высоту и 20 в ширину. Цвета – оттен-
ки серого, один канал.

Разберем случай, когда в  качестве моде-
ли управления используется модель со сте-
ком входных данных (3). Здесь nh = 20, nw = 20, 
а число нейронов на промежуточном слое вы-
брано равным n1 = 8. Объем выборки для ап-
проксимации среднего значения функционала 
J (опция n_steps) выбран равным 5000 с разме-
ром пакета 1250 (опция batch_size). Число ите-
раций градиентного метода для коррекции весов 
нейросетевых моделей (опция n_steps) выберем 
равным 10, а скорость обучения (опция learning_
rate) – 0.001. Обучение будем производить на 
центральном процессоре и завершим, когда чис-
ло дискретных шагов достигнет 500 тыс. (опция 
total_timesteps).

Оценка среднего суммарного вознаграждения 
во время обучения выросла со значения –0.1928 
на первых итерациях до 0.5663 на последней ите-
рации. Это значение меньше, чем в случае o = x 
(0.6505) и в случае o = x + ξ (0.5999).

Качество полученного управления было проте-
стировано в 152019 испытаниях Монте-Карло при 
равномерном распределении на Ω0 начальных ус-
ловий. Результаты оценок промаха по положению 
и скорости в конце эпизода, а также суммарные 
затраты характеристической скорости приведе-
ны в табл. 3. Из таблицы следует, что в среднем 
промах мимо фокальной линии составляет около 
7631 км, причем худшее значение промаха равно 
~26222 км. Эти значения примерно на 2000 км 
больше соответствующих значений для случая  
o = x + ξ. Средний промах по скорости: 29.7 м/с, 
а в худшем случае наблюдался промах по скоро-
сти величиной 58.2 м/с. Эти значения примерно 
на 12 м/с больше соответствующих значений для 
случая o = x + ξ. Средние затраты характеристи-
ческой скорости равны ~46.3 м/с, что также при-
мерно на 12 м/с больше соответствующего значе-
ния для o = x + ξ.

На рис. 6 показаны начальные и конечные про-
махи по положению мимо фокальной линии. Чет-
кие структуры при малых значениях начального 

Рис. 6. Начальные и конечные расстояния (точки синего цвета) до фокальной линии, полученные в серии испы-
таний Монте-Карло, для стратегии, основанной на стеке изображений
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Таблица 3. Квантили и средние значения распределений промаха по положению ∆rf и скорости ∆vf мимо 
фокальной линии и суммарные за эпизод затраты характеристической скорости u для стратегии, основанной 
на стеке изображений

Показатель q0 q0.25 q0.5 q0.75 q1.0 µ

∆rf, км 8.4155 4712.2326 7067.1193 10034.0078 26222.5645 7531.1550
∆vf , м/с 0.8226 18.8295 30.1019 41.2399 58.2252 29.7046
u, м/с 16.0063 38.2686 46.2525 54.6776 75.8273 46.3166
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промаха связаны с совпадающими наблюдения-
ми: используемая в данном примере модель изо-
бражений колец Эйнштейна не позволяет разли-
чить изображения вблизи фокальной линии.

Из неравенства Хефдинга и расчетов следу-
ет, что с вероятностью не менее 99.9 % истин-
ное среднее значение вероятности неблагопри-
ятного исхода (увеличение невязки по поло-
жению по сравнению с начальным значением 
невязки) равно 1.16 %  0.5 %, истинное среднее 
значение промаха по положению (при условии 
∆rf < 100 тыс. км) составляет 7531  500 км, ис-
тинное среднее значение промаха по скорости 
равно 29.7  3 м/с, а истинное среднее значение 
затрат характеристической скорости достигает 
46.3  3 м/с.

Перейдем теперь к  случаю модели управ-
ления с рекуррентной сетью (4), вместо стека 
входных данных. Размер скрытого состояния n1 
также был выбран равным 8. Качество обучен-
ного управления было протестировано в 152019 

испытаниях Монте-Карло при равномерном 
распределении на Ω0 начальных условий. Ре-
зультаты оценок промаха по положению и ско-
рости в конце эпизода, а также суммарные за-
траты характеристической скорости приведе-
ны в табл. 4. Из таблицы следует, что в среднем 
промах мимо фокальной линии составляет около 
6012 км, причем худшее значение промаха равно 
примерно 27882 км. Средний промах по скоро-
сти: 29.1 м/с, а в худшем случае наблюдался про-
мах по скорости величиной 60.6 м/с. Средние за-
траты характеристической скорости равны при-
близительно 50.7 м/с. Все эти значения близки 
к соответствующим значениям, полученным для 
модели управления со стеком входных данных. 
Доверительные интервалы для промахов и ха-
рактеристической скорости также меняются не-
значительно, по сравнению с предыдущей моде-
лью. На рис. 7 показаны начальные и конечные 
промахи по положению мимо фокальной линии. 
Картина также мало отличается от предыдущей, 
демонстрируемой на рис. 6.

Рис. 7. Начальные и конечные расстояния (точки синего цвета) до фокальной линии, полученные в серии испы-
таний Монте-Карло, для стратегии, основанной на рекуррентной сети
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Таблица 4. Квантили и средние значения распределений промаха по положению ∆rf и скорости ∆vf мимо 
фокальной линии и суммарные за эпизод затраты характеристической скорости u для стратегии, основанной 
на рекуррентной сети

Показатель q0 q0.25 q0.5 q0.75 q1.0 µ

∆rf, км      14.1111     3613.3095     5555.9305 7897.0397 27881.7771 6011.7537
∆vf , м/с        0.0664         17.1451         29.3133 40.7824 60.6289 29.0621
u, м/с        9.5444         43.6363         50.8189 58.5343 88.0539 50.6818



	 АВТОНОМНОЕ УПРАВЛЕНИЕ КОСМИЧЕСКИМ АППАРАТОМ 	 217

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ      том 63      № 2      2025

5. ОБУЧЕНИЕ С УЧЕТОМ ОШИБОК 
ИСПОЛНЕНИЯ МАНЕВРОВ

Перейдем к вопросу построения автономного 
управления, адаптивного к ошибкам исполнения 
импульсов скорости. Ошибку будем моделиро-
вать следующим образом. В начале каждого эпи-
зода реализуется случайная величина ρ ∈[ . , . ]0 5 1 6  
с непрерывным равномерным распределением. 
Эта величина не известна агенту. Эволюция со-
стояний среды происходит таким образом, что 
вместо применения импульса u на основе дей-
ствия агента применяется импульс ρu. Эта ошиб-
ка может быть связана, например, с уменьшен-
ным или увеличенным интервалом действия тяги 
или с неверным уровнем силы тяги. Необходимо 
получить управление, способное адаптироваться 
к ошибкам исполнения маневров, основываясь 
на наблюдениях состояния аппарата.

Рассмотрим два случая наблюдений – с оцен-
кой состояния o = x + ξ и изображением. Па-
раметры модели среды и управления и проце-
дуры обучения выбраны теми же самыми, что 
и в предыдущем разделе. В результате обучения 
были получены агенты, обученные в ситуациях 
с ошибкой по величине импульса до 30 %.

В случае o = x + ξ оценка среднего суммарно-
го вознаграждения во время обучения выросла со 
значения 0.1405 на первых итерациях до 0.5725 
на последней итерации, что немного меньше, 
чем в ситуации без ошибок исполнения импуль-
сов (0.5999). В табл. 5 показаны результаты моде-
лирования обученной стратегии для значений ρ 
от 0.5 до 1.6, указаны средние значения промаха 
по положению и по скорости, а также средние 

значения затрат характеристической скорости 
на основе действий агента; число испытаний 
Монте-Карло для каждого значения ρ равнялось 
152019, что согласно неравенству Хефдинга по-
зволяет получать доверительный интервал значе-
ний оцениваемых параметров размера 0 01. ( )b a−  
на уровне доверия 99.9 %, где a и b – априорные 
минимальное и максимальное значения оцени-
ваемого параметра. Значения промаха по поло-
жению округлены до первого знака после запя-
той, а промах по скорости и характеристическая 
скорость – до целых. Из таблицы видно, что про-
мах по положению остается одинаковым на ин-
тервале ρ ∈[ . , . ]0 8 1 2 , а для значений, на которых 
агент не обучался, невязки по положению растут 
тем сильнее, чем дальше ρ находится от интерва-
ла. Рост невязки по скорости объясняется тем, 
что в функции вознаграждения часть, связанная 
с промахом по положению, оказывается больше 
части, связанной с промахом по скорости, в ре-
зультате чего агент больше стремится понижать 
невязку по положению, но не по скорости.

В  случае наблюдений-изображений оценка 
среднего суммарного вознаграждения во время 
обучения выросла со значения −0 1303.  на пер-
вых итерациях до 0.5663 на последней итерации, 
что близко к случаю o x= + ξ. Аналогичные ре-
зультаты моделирования обученной стратегии 
для значений ρ от 0.6 до 1.6 показаны в табл. 6. 
Здесь для каждого фиксированного значения ρ 
производилось 265 испытаний Монте-Карло, 
что, согласно неравенству Хефдинга, позволя-
ет получать доверительный интервал значений 
оцениваемых параметров размера 0 2. ( )b a−  на 
уровне доверия 99.9 %, где a и b – априорные 

Таблица 5. Средние значения промаха по положению и скорости и средние значения характеристической 
скорости для различных значений ошибки исполнения импульсов для управления по оценке состояния

ρ 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5

µ∆rf , 103 км     6.2      6.0      5.8      5.7      5.6      5.6      5.6      5.6      5.7      6.3     8.1    11.4

µ∆v f , м/с 11 11 11 12 13 14 16 18 20 22 24 25

µu, м/с 62 63 63 64 64 65 65 66 66 66 68 70

Таблица 6. Средние значения промаха по положению и скорости и средние значения характеристической 
скорости для различных значений ошибки исполнения импульсов для управления по изображениям

ρ 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

µ∆rf , 103 км    17.2    15.8    13.7    11.6      9.7      7.4      6.4     7.3    11.4    15.0    21.0

µ∆v f , м/с 20 21 22 21 22 22 24 27 26 23 22

µu, м/с 53 53 51 51 52 51 50 49 48 47 47
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минимальное и  максимальное значения оце-
ниваемого параметра. Из табл. 6 видно, что чем 
дальше находится значение ρ от 1.0, тем больше 
средний промах по положению.

6. ЗАКЛЮЧЕНИЕ

В настоящей работе выведены и исследованы 
автономные квазиоптимальные законы управ-
ления космическим аппаратом в области фоку-
са гравитационной линзы Солнца, построенные 
с использованием методов обучения с подкре-
плением. Задача управления состояла в нацели-
вании на фокальную линию условной экзопла-
неты за несколько воздействий импульса скоро-
сти при старте на расстоянии до 100 тыс. км до 
фокальной линии с параллельной ей скоростью.

В результате расчетов были получены следу-
ющие выводы. При построении отображения 
положения и скорости аппарата в управляющие 
воздействия промах по положению варьируется 
в пределах от 1 до 2700 км, промах по скорости – 
от 0.012 до 30 м/с, а суммарные затраты характе-
ристической скорости – от 0.27 до 81 м/с. В слу-
чае отображения в  управляющие воздействия 
оценки состояния аппарата со среднеквадрати-
ческими ошибками по положению 10 тыс. км 
и по скорости 0.3 м/с, финальный промах по по-
ложению лежит в пределах от 2 км до 25 тыс. км, 
по скорости – от 0.01 до 46 м/с, а затраты харак-
теристической скорости – от 7 до 118 м/с. Зако-
ны управления на основе моделей изображений 
колец Эйнштейна приводят к промаху по поло-
жению от 8 км до 28 тыс. км, по скорости – от 
0.1 до 60 м/с, и к затратам характеристической 
скорости от 10 до 76 м/с. Архитектуры на осно-
ве стека входных данных и рекуррентной сети 
дают близкие результаты. В работе также пока-
зано, что модели управления могут быть успеш-
но обучены и в ситуациях, когда двигатель ап-
парата производит тягу не в полной мере или 
избыточно.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана грантом Российского на-
учного фонда (проект № 22-71-00051).

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет, что у  него нет конфликта 
интересов.

СПИСОК ЛИТЕРАТУРЫ

1.	 Brandt P.C., Provornikova E.A., Cocoros A. et al. Inter-
stellar Probe: Humanity’s exploration of the Galaxy 
Begins // Acta Astronautica. 2022. V. 199. P. 364–373. 
https://doi.org/10.1016/j.actaastro.2022.07.011

2.	 	Einstein A. The Field Equations of Gravitation // Pre-
ussische Akademie der Wissenschaften, Sitzungsberi-
chte, (Math. Phys.). Berlin, 1915. P. 844–847.

3.	 	Eddington A.S. Space, time and gravitation: An outline 
of the general relativity theory. Cambridge University 
Press, 1920.

4.	 	Фок В.А. Теория пространства, времени и тяготе-
ния. Москва: Физматгиз, 1955.

5.	 	Turyshev S.G., Toth V.T. Resolved imaging of exo-
planets with the solar gravitational lens // Month-
ly Notices of the Royal Astronomical Society. 2022.  
V. 515. Iss. 4. P. 6122–6132. https://doi.org/10.1093/
mnras/stac2130

6.	 	Turyshev S.G. Wave-theoretical description of the 
solar gravitational lens // Physical Review. 2017.  
V. 95. Iss. 8. Art. ID. 084041. https://doi.org/10.1103/
PhysRevD.95.084041

7.	 	Turyshev S.G., Toth V.T. Wave-optical treatment of 
the shadow cast by a large gravitating sphere // Phys-
ical Review. 2018. V. 98. Iss. 10. Art. ID. 104015. 
https://doi.org/10.1103/PhysRevD.98.104015

8.	 Turyshev S.G., Toth V.T. Optical properties of the solar 
gravitational lens in the presence of the solar corona //  
European Physical J. Plus. 2019. V. 134. Art. ID. 63. 
https://doi.org/10.1140/epjp/i2019-12426-4

9.	 	Turyshev S.G., Toth V.T. Image formation for extend-
ed sources with the solar gravitational lens // Phys-
ical Review. 2020. V. 102. Iss. 2. Art. ID. 024038. 
https://doi.org/10.1103/PhysRevD.102.024038

10.	 Toth V.T., Turyshev S.G. Image recovery with the 
solar gravitational lens // Physical Review. 2021.  
V. 103. Iss. 12. Art. ID. 124038. https://doi.
org/10.1103/PhysRevD.103.124038

11.	 	Willems P.A. Photometric Limits on the High Reso-
lution Imaging of Exoplanets Using the Solar Gravity 
Lens // Acta Astronautica. 2018. V. 152. P. 408–414. 
https://doi.org/10.1016/j.actaastro.2018.08.013

12.	 Turyshev S.G., Shao M., Alkalai L. et al. Direct Multi-
pixel Imaging and Spectroscopy of an exoplanet with 
a Solar Gravity Lens Mission // Final Report. NASA 
Innovative Advanced Concepts (NIAC). Phase I. 
2018. https://arxiv.org/abs/1802.08421

13.	 Turyshev S.G., Shao M., Toth V.T. et al. Direct Multi-
pixel Imaging and Spectroscopy of an Exoplanet with 
a Solar Gravity Lens Mission // Final Report. NASA 
Innovative Advanced Concepts (NIAC). Phase II. 
2020. https://arxiv.org/abs/2002.11871

14.	 Саттон Р.С., Барто Э.Г. Обучение с подкрепле-
нием. Москва: Бином. Лаборатория знаний, 2017.



	 АВТОНОМНОЕ УПРАВЛЕНИЕ КОСМИЧЕСКИМ АППАРАТОМ 	 219

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ      том 63      № 2      2025

15.	 Bertsekas D.P. Reinforcement learning and optimal 
control. Belmont: Athena Scientific, 2019.

16.	 Kamalapurkar R., Walters P., Rosenfeld J. et al. Re-
inforcement Learning for Optimal Feedback Control. 
A Lyapunov-Based Approach. Cham: Springer, 2018.

17.	 	Shirobokov M., Trofimov S., Ovchinnikov M. Survey 
of machine learning techniques in spacecraft control 
design // Acta Astronautica. 2021. V. 186. P. 87–97. 
https://doi.org/10.1016/j.actaastro.2021.05.018

18.	 Gaudet B., Linares R., Furfaro R. Terminal adaptive 
guidance via reinforcement meta-learning: Applica-
tions to autonomous asteroid close-proximity oper-
ations // Acta Astronautica. 2020. V. 171. P. 1–13. 
https://doi.org/10.1016/j.actaastro.2020.02.036

19.	 Gaudet B., Linares R., Furfaro R. Adaptive guidance and 
integrated navigation with reinforcement meta-learn-
ing // Acta Astronautica. 2020. V. 169. P. 180–190.  
https://doi.org/10.1016/j.actaastro.2020.01.007

20.	 Scorsoglio A., D’Ambrosio A., Ghilardi L. et al. Im-
age-based deep reinforcement meta-learning for au-
tonomous lunar landing // J. Spacecraft and Rock-
ets. 2022. V. 59. Iss. 1. P.  153–165. https://doi.
org/10.2514/1.A35072

21.	 Gaudet B., Linares R., Furfaro R. Six degree-of-free-
dom body-fixed hovering over unmapped asteroids 
via LIDAR altimetry and reinforcement meta-learn-
ing // Acta Astronautica. 2020. V. 172. P.  90–99. 
https://doi.org/10.1016/j.actaastro.2020.03.026

22.	 Широбоков М.Г. Методика построения управле-
ния космическими аппаратами с использовани-
ем методов обучения с подкреплением // Косм. 
исслед. 2024. Т. 62. № 5. С. 498–515. https://doi.
org/10.31857/S0023420624050082

23.	 Lefor A.T., Futamase T., Akhlaghi M. A systematic re-
view of strong gravitational lens modeling software //  

New Astronomy Reviews. 2013. V. 57. Iss. 1–2. 
P. 1–13. https://doi.org/10.1016/j.newar.2013.05.001

24.	 Oguri M. The Mass Distribution of SDSS J1004+4112 
Revisited // Public. Astronomical Society of Ja-
pan. 2010. V. 62. Iss. 4. P. 1017–1024. https://doi.
org/10.1093/pasj/62.4.1017

25.	 Silver D., Lever G., Heess N. et al. Deterministic poli-
cy gradient algorithms // Proc. 31st Intern. Conf. Ma-
chine Learning. Beijing, China. 2014. V. 32. Iss. 1.  
P.  387–395. http://proceedings.mlr.press/v32/sil-
ver14.html

26.	 Mnih V., Badia A.P., Mirza M. et al. Asynchronous 
Methods for Deep Reinforcement Learning // Proc. 
33rd Intern. Conf. Machine Learning. New York, 
USA. 2016. V. 48. P. 1928–1937. https://proceedings.
mlr.press/v48/mniha16.html

27.	 Schulman J., Wolski F., Dhariwal P. et al. Proxi-
mal Policy Optimization Algorithms // arXiv pre-
print. 2017. Art. ID. 1707.06347. https://arxiv.org/
abs/1707.06347

28.	 Moriarty D.E., Schultz A. C., Grefenstette J.J. Evolu-
tionary algorithms for reinforcement learning // J. Ar-
tificial Intelligence Research. 1999. V. 11. P. 241–276.

29.	 Sehgal A., La H., Louis S. et al. Deep reinforcement 
learning using genetic algorithm for parameter optimi-
zation // Proc. Third IEEE International Conference 
on Robotic Computing (IRC). 2019. P.  596–601. 
https://doi.org/10.1109/IRC.2019.00121

30.	 Hochreiter S., Schmidhuber J. Long short-term 
memory // Neural computation. 1997. V. 9. Iss. 8. 
P. 1735–1780.

31.	 Hoeffding W. Probability inequalities for sums of 
bounded random variables // J. American Statis-
tical Association. 1963. V. 58. Iss. 301. P.  13–30. 
https://doi.org/10.1080/01621459.1963.10500830



	 КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ      том 63      № 2      2025

ШИРОБОКОВ и др.220

The problem of autonomous control of the translational motion of the spacecraft in the vicinity of the 
focus of the gravitational lens of the Sun is formulated. The problem is solved by a reinforcement machine 
learning method using contemporary stochastic numerical methods. The costs of the characteristic 
velocity for targeting the focal line of a remote extended source, the final accuracy of targeting and the 
quality of the control function are investigated. The results of the study are given for various forms of state 
and observation: 1) position and velocity, 2) noisy position and velocity, 3) image of the Einstein ring.  
The efficiency of control strategies when using recurrent layers and fully connected layers with an input 
in the form of a measurement stack is compared. The training of control models accounting for execution 
errors of maneuvers is also being explored.
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