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Рассматривается задача построения множества номинальных оптимальных по Парето 
программ управления относительным движением маневрирующего на околокруговых 
орбитах космического аппарата относительно пассивной цели. Движение рассматривается 
в орбитальной цилиндрической системе координат в переменных, характеризующих вековое 
и периодическое движение в безразмерном виде, инвариантном по отношению к величине 
ускорения от тяги маневрирующего космического аппарата и высоте опорной орбиты. На 
основе аналитических исследований построены области граничных условий, допускающие 
применение более простых в реализации программ управления относительным движением 
с  двумя включениями тяги с  ориентацией в  трансверсальном направлении. Получено 
решение двухкритериальной параметрической задачи для критериев: моторное время работы 
двигателя и  общая продолжительность маневра. Применение принципа оптимальности 
Парето позволило упростить численную процедуру построения искомого множества не 
улучшаемых решений задачи из имеющейся выборки, удовлетворяющей граничным условиям 
перелета.
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1. ВВЕДЕНИЕ

Относительным движением будем называть 
движение центра масс маневрирующего косми-
ческого аппарата (КА 2) относительно центра 
масс пассивного космического аппарата (КА 1) 
на орбитах, близких к круговым. Исследование 
законов формирования заданного относитель-
ного положения двух КА – важный этап при ре-
шении таких прикладных задач космического 
полета, как сближение космических аппаратов, 
организация их группового полета [1–3], при-
ведение космического аппарата в точку стояния 
геостационарной орбиты [4], инспекция косми-
ческих объектов [5].

При проектировании траекторий космиче-
ских аппаратов основополагающей задачей яв-
ляется задача выбора номинального управле-
ния, которая может быть решена различными 
методами и с учетом технических ограничений 

на взаимное относительное положение косми-
ческих аппаратов, требованиями безопасного 
сближения с вращающимся объектом, ограни-
чениями, связанными с возможностями обзора 
пространства радиоэлектронными бортовыми 
средствами [6–8].

Настоящая статья продолжает развитие ранее 
проведенных исследований [9], в которых с при-
менением принципа максимума Понтрягина 
были получены и проанализированы структуры 
оптимального управления относительным дви-
жением для ряда типичных граничных условий. 
В данной работе исследуется возможность при-
менения более простых в реализации программ 
с двумя включениями тяги в трансверсальном 
направлении, когда преобладает требование кор-
рекции большой полуоси орбиты и фазы в отно-
сительном движении при незначительном изме-
нении эксцентриситета орбиты.
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При оптимизации управления для рассматри-
ваемого круга задач очевидными критериями бу-
дут продолжительность маневра (задача быстро-
действия), а также суммарные затраты моторно-
го времени (характеристической скорости). При 
введении в рассмотрение обоих критериев задача 
преобразуется в задачу многокритериальной оп-
тимизации. Чаще всего исследователи использу-
ют подход, предусматривающий сведение мно-
гокритериальной задачи к однокритериальной. 
Так, авторами исследований [10, 11] разработана 
методика выбора номинального управления от-
носительным движением в многокритериальной 
постановке, основанная на построении обоб-
щенного критерия и его дальнейшей миними-
зации с учетом ограничений методом штрафных 
функций. В настоящей статье ставится задача 
построения исчерпывающего множества неулуч-
шаемых решений задачи номинального управле-
ния относительным движением в рамках приня-
тых ограничений на управление.

 2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ 
ДВИЖЕНИЯ

Рассмотрим движение маневрирующего кос-
мического аппарата (КА 2) относительно пас-
сивного (КА 1). Движение каждого космическо-
го аппарата описывается набором из шести фа-
зовых координат, записанных в геоцентрической 
орбитальной цилиндрической системе.

Введем допущения, традиционно принимае-
мые в ряде работ для рассматриваемого случая 
движения [10–14]:

1) расстояние между центрами масс КА 1 
и КА 2 намного меньше модуля радиус-вектора 
КА 1;

2) орбита КА 1 – круговая или слабо эллипти-
ческая с эксцентриситетом не более 0.01;

3) величина ускорения от тяги КА 2, отнесенная 
к гравитационному ускорению на орбите КА 1,  
составляет менее 10–2, масса КА 2 постоянна;

4) движение рассматриваемых КА происходит 
в центральном гравитационном поле, влияние 
возмущающих сил не учитывается.

На основании введенных допущений разме-
стим начало системы координат в центр масс КА 1  
и запишем линеаризованные уравнения относи-
тельного движения [12–14]:
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Здесь ∆r – смещение КА 2 вдоль радиуса ор-
биты КА 1; ∆L – смещение КА 2 вдоль орби-
ты КА 1; ∆z – смещение КА 2 в боковом на-
правлении относительно орбиты КА 1; ∆Vr, 
∆Vu и ∆Vz – разность скоростей КА 1 и КА 2 
в радиальном, трансверсальном и боковом на-
правлениях; aS, aT и aW – проекции ускорения 
от тяги a КА 2 в радиальном, трансверсальном 
и боковом направлениях; λ – угловая скорость 
радиус-вектора КА 1:

λ µ=
−( )1 2 3

3

e

p
,

p, e — фокальный параметр и эксцентриситет ор-
биты КА 1.

Запишем систему (1) в матричном виде:
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Применяя формулу Коши к уравнению ди-
намики (1), получим выражение для определе-
ния фазового вектора в произвольный момент 
времени:

	 ∆ ∆X F X F dt t t Bu
t

( ) = ( ) ( ) + −( ) ( )∫0
0

τ τ τ.      (3)

Здесь F(t) — фундаментальная матрица систе-
мы (1), которая имеет вид [14]:
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Интегральная часть матричного уравнения (3) определяется квадратурами в форме матриц [14]:
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Анализ фундаментальной матрицы (4) позво-
ляет выявить закономерности относительного 
движения. В линейном приближении продоль-
ное пассивное движение (составляющие ∆r, ∆L, 
∆Vr и ∆Vu) не связано с боковым (составляющие 
∆z, ∆Vz). Анализ пассивного продольного дви-
жения показывает, что КА 2 двигается относи-
тельно КА 1 по эллипсу, центр которого сме-
щается с постоянной скоростью по движению, 
если центр эллипса лежит ниже КА 1, или про-
тив движения, если центр эллипса лежит выше 
КА 1. Полуоси эллипса относятся как 2:1. Из-
менение боковых составляющих Δz, ΔVz в пас-
сивном движении будет подчиняться гармони-
ческому закону.

В продольном относительном движении вы-
делим вековые и периодические составляющие 
[12, 15]. Вековыми будем считать параметры, 

характеризующие смещение центра эллипса 
и размер его малой полуоси, а периодической 
составляющей примем положение космическо-
го аппарата на эллипсе. В боковом движении ве-
ковым параметром будет амплитуда колебаний 
в боковой плоскости, а периодическим – фаза 
колебаний. Введем переменные
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Здесь ∆rсp – среднее смещение КА 1 вдоль 
радиуса орбиты КА 2; ∆Lсp – среднее сме-
щение КА 1 вдоль орбиты КА 2; lx = l cosφ,  



	 ПОСТРОЕНИЕ ПАРЕТО-ОПТИМАЛЬНЫХ ПАРАМЕТРИЧЕСКИХ ПРОГРАММ	 193

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ      том 63      № 2      2025

ly = l sinφ – периодические составляющие про-
дольного движения, xz = lz cosφz, yz = lz sinφz – 
периодические составляющие движения в боко-
вом направлении; l l lx y= +2 2  – малая полуось 
эллипса продольного относительного движения; 
l x yz z z= +2 2  – амплитуда боковых колебаний, 

ϕ ϕ= =arctan , arctan
l
l

x

y
x

y
z

z

z
 – фазовые углы.

Запишем дифференциальные уравнения для 
переменных (6). Для этого продифференцируем 
их правые и левые части по времени и после пре-
образований, учитывая систему (1), получим:
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Аналитическое решение данной системы 
получается из решения матричного уравнения 
в квадратурах (5) с учетом преобразований (6):
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Здесь обозначено:
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Здесь δS, δT и δW – функции включения тяги 
в радиальном, трансверсальном и боковом на-
правлении. В общем виде параметры управления 
определяются как

δ δ α β
δ δ α β

δ δ β
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=
=
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cos cos ,

sin cos ,

sin ,

где δ – функция включения тяги δ = {0;1}, α – 
угол между проекцией вектора тяги на плоскость 
орбиты и трансверсальным направлением, β – 
угол отклонения тяги от плоскости орбиты.

Приведем (7) систему к безразмерному виду. 
Для этого разделим правую и левую часть урав-
нений системы (7) на масштабный множитель 
K a= −2 2λ  для фазовых координат и введем без-
размерное время t t= λ , после преобразований 
получим
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Решение системы (8) примет безразмерный 
вид:

	 ∆ ∆ ∆ ∆ ∆r t r C L t L t r
D

l t l
B

lx x y

( ) = + ( ) = − −

( ) = −

0 0 0
, 1 5

2

20

, ;

, tt l
A

x t x
B

y t y
A

у

z z
z

z z
z

( ) = +

( ) = + ( ) = +

0

0 0

2

2 2

;

, .

cр cр cр cр cр	

∆ ∆ ∆ ∆ ∆r t r C L t L t r
D

l t l
B

lx x y

( ) = + ( ) = − −

( ) = −

0 0 0
, 1 5

2

20

, ;

, tt l
A

x t x
B

y t y
A

у

z z
z

z z
z

( ) = +

( ) = + ( ) = +

0

0 0

2

2 2

;

, .

cр cр cр cр cр            
(11)

∆ ∆ ∆ ∆ ∆r t r C L t L t r
D

l t l
B

lx x y

( ) = + ( ) = − −

( ) = −

0 0 0
, 1 5

2

20

, ;

, tt l
A

x t x
B

y t y
A

у

z z
z

z z
z

( ) = +

( ) = + ( ) = +

0

0 0

2

2 2

;

, .

cр cр cр cр cр

Система (10) инвариантна к величине уско-
рения от тяги КА 2 и параметрам орбиты КА 1. 
Далее, для упрощения записи, верхний символ 
“–” будет опущен. Подразумевается, что все пе-
ременные безразмерны.

Для полноты модели запишем аналитические 
соотношения, описывающие изменение ма-
лой полуоси эллипса относительного движения 
и амплитуды боковых колебаний:
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Далее рассматривается только продольное от-
носительное движение, а управление маневриру-
ющим космическим аппаратом осуществляется 
переключением знака трансверсальной состав-
ляющей вектора тяги, радиальная составляю-
щая не используется. В этом случае α = 0 или 
180°, β = 0, из чего следует δТ = δ = {–1; 0; 1}, где 
нуль соответствует пассивному участку, а плюс 
и минус единица – значения ориентации век-
тора тяги против и  по вектору скорости КА 2 
соответственно.

3. ИССЛЕДОВАНИЕ ПАРАМЕТРИЧЕСКИХ 
ПРОГРАММ УПРАВЛЕНИЯ ПРОДОЛЬНЫМ 

ДВИЖЕНИЕМ

Обоснуем структуру управления с двумя 
включениями тяги в трансверсальном направле-
нии. При трансверсальной ориентации вектора 
тяги уравнения движения примут вид

	
∆ ∆ ∆



 



r L r

l l l l

t

x y y x

cp cp cp

мот

= = −

= − =

=

δ

δ

δ

, , ,

, ,

.

1 5

	 (13)

Здесь δ — функция знака тяги, которая может 
принимать значения δ = {–1; 0; 1}, где “минус 1” 
соответствует ориентации тяги в трансверсаль-
ном отрицательном направлении, “плюс 1” –  
в положительном, а нуль соответствует пассив-
ному участку. Таким образом, рассматривается 
задача о минимуме моторного времени при фик-
сированном общем.

В соответствии с алгоритмом принципа мак-
симума Понтрягина запишем гамильтониан си-
стемы (13), получим [16]:

H r l lr L l y l xx y
= − + −( ) + −δ δ δΨ Ψ ∆ Ψ Ψ∆ ∆ср ср ср1 5. ,

H r l lr L l y l xx y
= − + −( ) + −δ δ δΨ Ψ ∆ Ψ Ψ∆ ∆ср ср ср1 5. ,

где Ψ Ψ Ψ Ψ∆ ∆r L l lx yср ср
 и , ,  – сопряженные пере-

менные, уравнения для которых имеют вид
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∆ ∆
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
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Оптимальное управление определим из усло-
вия максимума гамильтониана, получим:

	 δопт

ср

ср
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− < + <

+ ≥


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
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Ψ Ψ

Ψ Ψ

∆

∆

∆

r l

r l

r l

x

x

x

;

;

.

	 (14)

Анализ оптимального управления (14) пока-
зывает, что оно определяется знаком суммы ли-
нейной (Ψ∆rср( )) и гармонической (Ψlx( )) функций 
времени. Нетрудно заметить, что при домини-
ровании требования коррекции векового дви-
жения (составляющие ∆ ∆r Lср ср и ) оптимальное 
управление будет стремиться к структуре с двумя 
включениями тяги разного знака, которые раз-
делены пассивным участком. Если же гранич-
ные условия таковы, что доминирует требование 
коррекции периодических составляющих движе-
ния, возможна структура управления с включе-
ниями тяги одного знака (см. рис. 4 в работе [9]).

Отобразим на фазовой плоскости (∆ ∆r Lср ср−( ))  
линии переключения и характерные фазовые 
траектории для следующей задачи: опреде-
лить оптимальные траектории движения в рам-
ках линеаризованной модели, обеспечивающие 
приведение параметров ∆ ∆r L lср ср  и ,  в нулевые 
значения при доминировании составляющих 
∆ ∆r Lср ср и  (рис. 1).

В задаче управления вековыми составляющи-
ми движения, без учета граничного условия для 
малой полуоси эллипса относительного движе-
ния, программа управления будет иметь клас-
сическую структуру с двумя включениями тяги 
разного знака, разделенными пассивным участ-
ком с нулевым начальным пассивным участком 
(участком ожидания). На рис. 1 это, например, 
траектория АСС1О или АВВ2О. 

Существует траектория, характеризующаяся 
пассивным участком нулевой продолжительно-
сти, на рис. 1 это траектория ADO, для которой 
характерно минимальное общее время и макси-
мальное моторное.

Существует траектория, характеризующая-
ся первым активным участком нулевой продол-
жительности, на рис. 1 это траектория ВВ2О или 
СС1О, для которой характерно минимальное мо-
торное время и максимальное общее.

Можно выделить две траектории, приводя-
щие параметры ∆ ∆r Lср ср и  в нулевые значения 
без переключения – это траектории F1O и FO. 
Линию FF1 назовем линией переключения, ко-
торая делит фазовую плоскость на область  1  
и область 2. В области 1 знак тяги на первом ак-
тивном участке равен δ = 1, а в области 2 он ра-
вен δ = –1.
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Теперь вернемся к задаче (13)–(14) с учетом 
граничного условия для малой полуоси эллипса 
относительного движения. Как упоминалось ра-
нее, возможен вариант, когда активные участки 
могут быть как разного знака с ненулевым участ-
ком ожидания, так и одинакового.

Анализ показывает, что в каждой из областей 1 
и 2 можно выделить подобласти 1.1 и 1.2, 2.1 и 2.2, 
получаемые делением исходных областей осью 
абсцисс. Если начальная точка принадлежит по-
добласти 1.1 или 2.1, как, например, точка A, то 
структура управления будет иметь два включе-
ния тяги разного знака, разделенные пассивным 
участком. Если начальная точка принадлежит 

подобласти 1.2 или 2.2, как, например, точка B, 
то структура управления может иметь как один 
активный участок (траектория BB2O или CC1O ), 
так и два активных участка разного (траектория 
A1ABB2O или A1ACC1O на рис. 2) или одинакового 
знака (траектория BB1EE1O).

Нетрудно показать, что все траектории с ак-
тивными участками одного знака для фиксиро-
ванной начальной точки будут эквивалентными 
по затратам моторного времени. При этом сле-
дует отметить, что траектория BB2O будет более 
выигрышной, чем BB1EE1O, с точки зрения за-
трат общего времени на коррекцию.

Рис. 1. Анализ траекторий векового движения 
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Рис. 2. Множество Парето оптимальных решений задачи для граничных условий малое отклонение и большое 
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Резюмируя вышесказанное, введем в рас-
смотрение структуры управления с двумя вклю-
чениями тяги разного или одинакового знака, 
соответствующие оптимальным траекториям,  
в которых в явном виде включим в рассмотре-
ние параметры управления – размеры активных  
(t1 и t1) и пассивных участков (участок ожидания 
размером р0 и пассивный участок между актив-
ными размером р1), которые должны удовлетво-
рять граничным условиям задачи
t = 0 :  ∆rср = ∆rср0,  ∆Lср = ∆Lср0,  lx = lx0,  ly = ly0,

t = tк :   ∆rср = 0,        ∆Lср = 0,         lx = 0,    ly = 0   
(15)

и доставлять минимум критериям задачи 

tмот =  t1 + t2  min,

toбщ = р0 +  t1 + р1 + t2  min,         

,

(16)

где tмот (сумма затраты моторного времени) и toбщ 
(сумма затрат общего времени) являются двумя 
независимыми критериями задачи. Данная зада-
ча является двухкритериальной, в которой и мо-
торное и общее время рассматриваются как два 
независимых критерия.

В соответствии с проведенным анализом опре-
делим знак тяги на первом активном участке че-
рез начальные и конечные граничные условия для 
вековых составляющих движения ∆ ∆r Lср ср и–∆ ∆r Lср ср и :

	 δ = −( ) −












sign
0 к

0 02
3 2

∆ ∆
∆ ∆

L L
r r

,cр cр
cр cр .	 (17)

На втором участке он будет противоположным.
Для расчета программ управления относи-

тельным движением используется следующий 
прием. Определяются размеры активных участ-
ков как функции граничных условий для ве-
кового движения, т.е. начальных и конечных 
∆ ∆r Lср ср и , и размеров пассивных участков р0 и р1,  
которые являются свободными параметрами  
и выбираются исходя их требования удовлетво-
рения граничных условий для периодического 
движения – начальные и конечные lx и ly.

Рассмотрим задачу управления относитель-
ным движением по программе с двумя включе-
ниями тяги разного знака. Для рассматриваемой 
структуры управления аналитическое решение 
(10) примет вид
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∆ ∆ ∆

r t r t t

L t L p t p t r

ср ср

ср ср ср0

( ) = + −( ) =

( ) = − + + +( )
0 1 2

0 1 1 2

0

3
2

δ ,

00

3
4

21
2

2
2

1 2 1

0 0 0 1 1 2

− − + +( )( ) =

( ) = + + + +

δ

ϕ

t t t t p L

l t l p t p tx

∆ срк
,

cos (( ) + + +( ) − +( ) − ( )( ) =

( ) = +

δ

ϕ

sin sin sin ,

sin

t p t p t t

l t l py

1 1 2 1 2 2

0 0 0

0

++ + +( ) + +( ) − + +( ) + ( ) −( ) =









t p t p t t p t t1 1 2 1 2 1 1 2 2 1 0δ cos cos cos .





     (18)

t
p

r
p

L L r p
r

1
1 1

2

0

2

2 4
2
3 20 0 0

0= − − + + −( ) −





+δ δ∆ ∆ ∆ ∆
∆

ср ср ср ср
ср

к
,,

.t
p p

L L r p
r

2
1 1

2

0

2

2 4
2
3 20 0

0= − + + −( ) −





+δ ∆ ∆ ∆
∆

ср ср ср
ср

к

,
             (19)

t r p p L L r p rмот

общ

= − − + + −( ) −



 +δ δ∆ ∆ ∆ ∆ ∆

0 01 1
2

0
24

3
2 3 2срср ср

ср

ср

срср

срк 0 0
,,

t r p p L L r p r= − + + + −( ) −



 +δ δ∆ ∆ ∆ ∆ ∆

0 00 1
2

0
4
3

2 3 2ср срк 0 00

2 .

             (20)

Из первых двух уравнений системы (18) определим размеры активных участков:

Определим критериальные функции задачи (16); учитывая размеры активных участков (19), получим:
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Из критериальных функций (20) определим размер пассивного участка как функцию критерия:

p t
r r t L L p r
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2 2

06 3 4 2 3
0 0 0 0( ) =
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мот ,                         (21)
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Приравняв правые части (21) и (22), получим границы множества оптимальных по Парето решений:

Определим, в каких пределах могут из-
меняться критерии задачи для рассматрива-
емой структуры управления. Максимальное  

значение  моторного времени  достигается 
при нулевом размере пассивного участка. 
Запишем:

Определим минимум моторного времени. Су-
ществует такое р1, при котором размер первого 
активного участка обращается в нуль:

t1 = 0, при

t p
r L L r p

r1 1

2
0

0
3 2 2 3

6
0 0 0

0

= =
− + −( ) −



∆ ∆ ∆ ∆

∆

δ

δ
ср срк

.
ср ср

ср

 (25)

Приравняв правую часть (25) к правой части 
(21) и решив полученное уравнение относитель-
но tмот, получим:

	 min (tмот) = |∆ ∆r Lср ср и 0|.	 (26)
Подставив выражение (24) и/или (26) в равен-

ство (23), можно получить нижнее и верхнее зна-
чения общего времени.

Теперь рассмотрим полную задачу, с учетом 
граничного условия для периодического движе-
ния, – определим размеры пассивных участков, 
удовлетворяющие граничному условию для ма-
лой полуоси эллипса относительного движения. 
Для этого необходимо решить численно третье  
и четвертое уравнение системы (18) относитель-
но неизвестных – размера участка ожидания р0  
и размера пассивного участка р1; размеры актив-
ных участков нужно определять по формуле (19).

Для решения поставленной задачи разработан 
численный алгоритм, в основу которого положе-
на оценка предельного приращения малой полу-
оси эллипса относительного движения. 

Определим придельное приращение ма-
лой полуоси эллипса относительного дви-
жения на основе следующих соображений.  
В уравнении (12) введем допущение о том, что 
δ ϕsin arctan0 0 1 1 2 1+ + + + +( ) = −p t p t B

A , т.е. упо- 
мянутый синус равен экстремальному значе-
нию. При lк = 0 оставшаяся его часть примет вид 

l0
2 2= +A B , где А и В есть второе слагаемое  

в правой части третьего и четвертого уравнений 
системы (18). Можно записать:
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Можно заметить, что при размере пассивного 
участка кратном половине орбитального периода 
p N

t t
1

1 2
2

= −
+

π , где N — натуральные числа, до-
стигается предельное приращение малой полуо-
си эллипса относительного движения:
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Как следует из последнего равенства, пре-
дельное приращение малой полуоси эллипса от-
носительного движения в этом случае составит 
четыре безразмерных единицы, что определяет 
область начальных условий по приращению ма-
лой полуоси эллипса относительного движения, 
допускающую применение программ с двумя 
включениями тяги.

Таким образом, варьирование параметра N (раз-
мера пассивного участка) приводит к получению 

серии решений задачи, некоторые из которых оп-
тимальны по Парето. Размер участка ожидания 
целесообразно выбрать из требования удовлет-
ворения введенного допущения. На основании 
проведенного исследования составлен алгоритм 
решения задачи, реализованный в программную 
оболочку.

Рассмотрим задачу управления относительным 
движением по программе с двумя включениями 
тяги одинакового знака. Расчет программы управ-
ления базируется на тех же принципах, что и про-
граммы с двумя включениями тяги разного знака. 
Запишем решение, аналогичное (18), получим

Определим размеры активных участков из 
первых двух уравнений системы (29) как функ-
ции граничных условий для векового движения 
и размеров пассивных участков: 
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(30)

Здесь знак ускорения от тяги на активных 
участках одинаков и противоположен по отно-
шению к равенству (17). Управление (30) удовлет-
воряет граничным условиям для векового движе-
ния области 1.2 и 2.2 (см. рис. 1) в любом их со-
четании. Для удовлетворения граничного условия 
для периодического продольного движения не-
обходимо выбрать строго определенные размеры 
пассивных участков, которые являются корнями 
третьего и четвертого уравнения системы (29).

Покажем, что в рассматриваемом случае двух-
критериальная задача вырождена. Учитывая (30), 
определим критерии задачи (16):

	
t t t r

t p p r

= + =

= + +

1 2
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0

0

∆
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,

.общ

мот ср

ср

	 (31)

Как следует из выражений (31), критерий “мо-
торное время” не зависит от размера пассивного 

участка и равен абсолютной разности граничных 
условий для среднего радиуса орбиты, а крите-
рий “общее время” линейно увеличивается при 
увеличении размера пассивного участка. Таким 
образом, многокритериальная задача сводится 
к одному единственному решению с минималь-
ными размерами р0 и р1, удовлетворяющими 
граничному условию для периодического про-
дольного движения, т.е. являющимися корнями 
третьего и четвертого уравнений системы (21). 

Решить поставленную задачу можно числен-
но. Как показало проведенное исследование 
данной задачи, размер участка ожидания целе-
сообразно выбрать несколько большим, чем раз-
мер пассивного участка, определенный по фор-
муле (25), а размер пассивного участка принять 
равным 2π.

4. СРАВНЕНИЕ ПРОГРАММ УПРАВЛЕНИЯ 
С ДВУМЯ ВКЛЮЧЕНИЯМИ ТЯГИ  

С ОПТИМАЛЬНЫМИ

В первую очередь рассмотрим вопрос близо-
сти предложенного управления с двумя включе-
ниями тяги к оптимальному. Решим задачу вы-
бора размеров активных и пассивных участков 
для начальных условий движения

	 ∆rср 0 = 36.3, ∆Lср 0 = 2720, l0 = 2, φ0 = 0   (32)
при нулевых конечных условиях. 
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Для граничных условий (32) нами ранее, 
с применением принципа максимума Понтря-
гина, было получено оптимальное управление 
с трансверсальной ориентацией вектора тяги 
[9]. Решим данную задачу с применением про-
грамм управления с двумя включениями тяги. 
Данная задача имеет три решения по програм-
мам с разным знаком тяги и одно с одинако-
вым. Все найденные решения оптимальны по 
Парето, в табл. 1 приведены размеры участков.

Как следует из табл. 1, степень неоптималь-
ности получаемого параметрического решения 
уменьшается по мере увеличения размера пас-
сивного участка. Действительно, при решении 
оптимизационной задачи [9] в области сравни-
тельно больших затрат моторного времени (ре-
шение 1.1 и 1.2) имело место пять включений 
тяги, а по мере уменьшения затрат моторного 
времени оно уменьшилось до трех, в то время 
как в рамках параметрического подхода мы огра-
ничены только двумя включениями тяги, чем 
можно и объяснить достаточно большой прои-
грыш по критериям задачи.

5. МОДЕЛИРОВАНИЕ ПРИВЕДЕНИЯ 
КОСМИЧЕСКОГО АППАРАТА 

В ЗАДАННУЮ ТОЧКУ СТОЯНИЯ 
ГЕОСТАЦИОНАРНОЙ ОРБИТЫ

Рассмотрим задачу номинального приведения 
космического аппарата, имеющего ускорение от 
тяги 5 10 5⋅ −  м/с2, в точку стояния геостационар-
ной орбиты (λ = ⋅ − −7 29211 10 5 1. с ) нуль градусов 
восточной долготы, параметр K = 18 8058.  км. 

Можно отметить особенность данной задачи, свя-
занную с тем, что в качестве КА 1 рассматривается не 
конкретный космический аппарат, а некоторая точ-
ка геостационарной орбиты, в которой по истечении 
некоторого времени должен оказаться КА 2.

В табл. 2 и 3 показаны параметры орбиты ма-
неврирующего КА в начальный момент времени 
в оскулирующих элементах и терминах векового 
и периодического движения. В табл. 3 в скобках 
приведены безразмерные значения.

Расчет параметров управления, размеров пас-
сивных участков, программ управления с двумя 
включениями тяги выполнен на безразмерной 

Таблица 1. Решения задачи (32)

№ tмот tобщ р0 t1 р1 t2
% от 

оптимального*
1. Структура с двумя включениями тяги разного знака

1.1 58.2216 63.7344 2.0022 10.9608 3.5106 47.2608 113
1.2 52.9248 64.0684 1.8321 8.3124 9.3114 44.6124 106
1.3 47.6924 64.7180 1.1433 5.6962 15.8823 41.9962 103

2. Структура с двумя включениями тяги одного знака

2.1 36.3000 69.1883 29.2242 10.7411 3.6640 25.5589 101
Примечание. *Для подсчета степени неоптимальности программ с разным знаком тяги на активных участках была решена 
краевая задача оптимального управления (14) при общем времени, показанном в таблице. Полученное оптимальное 
моторное время отнесено к моторному времени, показанному в таблице. Для программы с одинаковым знаком тяги 
фиксировалось моторное время, а приведенное число подсчитано по общему времени.

Таблица 2. Начальные условия движения активного космического аппарата в оскулирующих элементах
Вариант начальных 

условий
Большая 

полуось, км Эксцентриситет Истинная 
аномалия, град

Аргумент широты, 
град

Малое отклонение 42 164.16 10–4 0 4

Большое отклонение 42 464.16 1.10–3 0 20

Таблица 3. Начальные условия движения в терминах векового и периодического движения 
Вариант начальных условий ∆rср ∆Lср l φ

Малое отклонение 0 км (0) 2943 км (156.52) 4.21 км (0.22) 0
Большое отклонение 300 км (15.66) 14807 км (787.41) 43.06 км (2.29) 0
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Таблица 4. Методические ошибки, обусловленные линеаризацией уравнений движения
Вариант начальных 

условий
∆rср (ошибка по большой 

полуоси, км)
∆Lср (ошибка по долготе  

точки стояния)
l (ошибка по 

эксцентриситету)

Малое отклонение 1...10 м 0.4...4 км (менее 0.005°) 0.2...2 км (менее 10–5)
Большое 
отклонение 2...2.4 км 90...100 км (порядка 0.13°) 2...12 км (порядка 10–5)

линейной модели, а моделирование выполне-
но на модели движения в  равноденственных 
элементах.

В табл. 4 показаны методические ошибки (па-
раметры относительного движения в конечный 
момент времени), обусловленные линеаризаци-
ей уравнений движения. На рис. 2 показано мно-
жество Парето для граничных условий – малое 
и большое отклонение.

Как следует из рис. 2, для граничных условий 
“малое отклонение” найдено 112 решения, из 
которых только 101 формирует множество Па-
рето. Для граничных условий “большое откло-
нение” найдено шесть (пять с разным знаком 
тяги и одно с одинаковым) решений задачи, пять 
(четыре с разным знаком тяги и одно с одинако-
вым) из которых формируют множество Парето. 
Множество Парето имеет дискретный характер, 
что связано с необходимостью выбора пассив-
ных участков строго определенного размера.

На рис. 3 и 4 показан пример траектории при-
ведения маневрирующего космического аппара-
та в заданную точку стояния по программе с раз-
ным (решение 1.3 по табл. 1) и одинаковым (ре-
шение 2.1 по табл. 1) знаком тяги на активных 
участках.

Как следует из табл. 3, вполне понятно, что 
чем меньше начальное отклонение параметров 
движения КА от заданных, тем выше точность. 
Наибольшую сложность при решении данной 
задачи вызывает управление эксцентриситетом 
орбиты. На заключительном включении тяги он 
изменяется по гармоническому закону от прак-
тически нулевого до некоторого амплитудно-
го значения, в то время как оставшиеся пара-
метры – по закону близкому к линейному, для 
широты точки стояния, и кусочно-линейному, 
для большой полуоси. Методические ошибки, 
обусловленные линеаризацией уравнений дви-
жения, невелики и  в  последствии могут быть 
устранены путем уточнения размеров активных 
и  пассивных участков на нелинейной модели 
движения. Как показал численный расчет, раз-
меры участков изменятся незначительно, на ве-
личину менее 1 %.

6. ЗАКЛЮЧЕНИЕ

Проведенное исследование программ управ-
ления относительным движением с двумя вклю-
чениями тяги в трансверсальном направлении на 
безразмерной модели относительного движения 
в терминах вековых и периодических составля-
ющих в двухкритериальной постановке – мини-
мум моторного и минимум общего времени – 
позволило получить следующие выводы:

1. Применение построенных программ управ-
ления с двумя включениями тяги в разных на-
правлениях возможно при любых сочетаниях 
граничных условий перелета по вековым состав-
ляющим относительного движения, в то время 
как программа с  включениями тяги в  одина-
ковом направлении возможна только в строго 
очерченной области. Для программы с  двумя 
включениями тяги разного знака получены ана-
литические соотношения, позволяющие очер-
тить границу множества Парето.

2. Для программ с двумя включениями тяги 
получены аналитические соотношения, связы-
вающие граничные условия задачи для векового 
движения с размерами активных участков про-
грамм управления. Варьирование размера пас-
сивного участка для программ с  разным зна-
ком тяги позволило построить эффективный 
алгоритм получения серии неулучшаемых по 
Парето программ управления относительным 
движением.

3. Проведено исследование возможности 
коррекции периодических составляющих отно-
сительного движения с применением программ 
управления с двумя включениями тяги, которое 
показало, что предельное их приращение соста-
вит четыре безразмерных единицы, что оконча-
тельно очерчивает область применения разрабо-
танных программ управления.

4. Сравнение разработанных программ с оп-
тимальными программами управления продоль-
ным относительным движением с  пассивным 
участком показало их близость.
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Рис. 3. Пример траектории векового движения (сверху) и зависимости малой полуоси эллипса относительного дви-
жения от времени (снизу), управление по программе с двумя включениями тяги разного знака

a) Òðàåêòîðèÿ âåêîâîãî äâèæåíèÿ

40

30

20

10

200    400   600   800   1000  1200  1400  1600  1800  2000  2200  2400  2600  2800

∆r

∆L

Ñðåäíåå äâèæåíèå ∆L − ∆rср ср

Ïåðèîäè÷åñêîå äâèæåíèå (∆L + 2l ) − (∆r − l )ср y ср x

á) Çàâèñèìîñòü ìàëîé ïîëóîñè ýëëèïñà îòíîñèòåëüíîãî äâèæåíèÿ îò âðåìåíè

2

1.5

1

0.5

5 10 15 20 25 30 35 40 45 50 55 60 65

l

t



	 КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ      том 63      № 2      2025

ИШКОВ, ФИЛИППОВ202

Рис. 4. Пример траектории векового движения (сверху) и зависимости малой полуоси эллипса относительного дви-
жения от времени (снизу), управление по программе с двумя включениями тяги одинакового знака
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The problem of designing a set of nominal Pareto optimal control programs for the relative motion of  
a spacecraft maneuvering in circular orbits relative to a passive target is considered. Motion is considered 
in an orbital cylindrical reference frame in variables characterizing secular and periodic motion in a 
dimensionless form, invariant with respect to the magnitude of acceleration from the thrust of a maneuvering 
spacecraft and the height of the reference orbit. On the basis of analytical studies, areas of boundary 
conditions have been constructed that allow the use of simpler relative motion control programs with two 
active areas oriented in the transversal direction. The solution of a two-criterion parametric problem for 
the criteria is obtained: the motor operating time of the engine, and the total duration of the maneuver. 
The application of the Pareto optimality principle made it possible to simplify the numerical procedure for 
constructing the desired set of non-improved solutions to the problem from the available sample satisfying 
the boundary conditions of the transfer.
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