
1. ВВЕДЕНИЕ

Применение траекторных измерений опти-
ческого и радио— диапазонов для определения 
орбиты космического аппарата (КА) — одна из 
важнейших процедур баллистико-навигацион-
ного обеспечения космических проектов. Обыч-
но используются измерения угловых координат 
КА, дальномерные радио— и лазерные измере-
ния, доплеровские измерения радиальной ско-
рости КА. Каждый из этих типов наблюдений 
имеет свою математическую модель, на основе 
которой вычисляются невязки с реальными на-
блюдениями. Эта информация является клю-
чевой при обработке траекторных измерений и 
служит для уточнения реальной орбиты КА. Не-
смотря на то что модель траекторных наблюде-
ний хорошо известна [1–3], в процессе уточне-
ния орбиты возникает сложность в виде наличия 
аномальных измерений. Эти измерения характе-
ризуются распределением значений, которое не 
соответствует предположениям модели измере-
ний. Несоответствие ожидаемым значениям де-
лает их неинформативными в контексте уточне-
ния орбиты. Они отличаются заметно большим 
шумом и не несут в себе полезной информации. 
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Такие аномалии могут возникать из-за ошибок 
бортовой и наземной аппаратуры, ошибок при-
ема сигнала при его захвате и потере, а также 
из-за различных сбоев при прохождении сигна-
ла через слои атмосферы и ионосферы [4]. На-
пример, обработка траекторных наблюдений 
КА “Спектр-Р” [5] и КА “Спектр-РГ” [6] с оте-
чественных станций слежения в Медвежьих Озе-
рах и Уссурийске выявила большое число ано-
мальных измерений [4].

Присутствие аномальных измерений может 
значительно повлиять на точность определения 
орбиты КА. Обнаружить аномальные измере-
ния в автоматическом режиме бывает непро-
сто, т.к. сложно подобрать единый критерий от-
личия аномального измерения от нормального 
зашумленного измерения. Наиболее популяр-
ным, простым и эффективным методом уточ-
нения орбиты является метод наименьших ква-
дратов [7–10]. Он основан на технике обработ-
ки всех имеющихся наблюдений одновременно. 
Для его корректной работы необходима пред-
варительная отбраковка измерений. Помимо 
этого, существует группа методов, основанная 
на последовательной обработке данных. К ним 
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можно отнести метод фильтра Калмана [11–13]. 
Но и в этом случае аномальные измерения мо-
гут значительно замедлить сходимость процесса 
уточнения орбиты и требуют предварительной 
отбраковки.

Для отбраковки измерений можно использо-
вать статистические методы, основанные на раз-
личных критериях. К таким критериям можно 
отнести Z-оценку [14], межквартильный размах 
[15], медианные абсолютные отклонения [16], 
критерий Граббса [17], оценку Ходжеса – Лемана 
[18] и т.д. Обычно для этих методов выбирается 
некоторое пороговое значение, при превышении 
которого наблюдение можно считать аномаль-
ным. Перед использованием критерия оценки 
аномальных измерений часто применяют раз-
личные модели регрессии и методы сглажива-
ния данных. Если есть информация о начальном 
приближении орбиты, то ее используют, чтобы 
анализировать не сами измерения, а их рассогла-
сованные значения с приближенной орбитой — 
невязки. В этом случае оказывается достаточным 
использование линейной регрессии для устране-
ния тренда временной последовательности.

В случае если априорная орбита недоступна, 
и приходится работать с самими на— блюдения-
ми, возникают дополнительные сложности. Для 
того чтобы выбрать единый критерий оценки 
аномальных измерений, необходимо устранить 
временной тренд наблюдений, что не всегда бы-
вает тривиальной задачей. Помимо этого, тра-
екторные наблюдения могут иметь разные мас-
штабы, например для перигея и апогея высоко-
эллиптической орбиты, от тысяч до сотен тысяч 
километров. Кроме того, временные последова-
тельности наблюдений могут содержать нели-
нейные зависимости, к которым сложно подо-
брать единый критерий оценки аномальности и 
выбрать нужное пороговое значение.

Помимо классических статистических мето-
дов для анализа космических данных исполь-
зуются методики машинного обучения [19, 20]. 
Для обнаружения аномалий могут использовать-
ся методы кластеризации [21–23], трансформа-
ции [24, 25] и предсказания [26] спутниковых 
данных. Эти методы имеют более сложную фор-
му, чем традиционные статистические мето-
ды, но могут предсказывать аномалии для более 
сложных временных последовательностей. В то 
же время их основными недостатками являются:

·	 потребность в большом количестве данных;
·	 настройка гиперпараметров;
·	 время обучения;

·	 проблемы переобучения;
·	 сложность интерпретации процесса получе-

ния результатов;
·	 вычислительная сложность.
В настоящей работе предложен метод опреде-

ления аномальных измерений путем рекурсив-
ного разбиения временной последовательности 
наблюдений. Он не требует начального прибли-
жения орбиты или предварительного обучения, 
подходит к различным типам орбит и масштабам 
наблюдений и работает быстрее, чем методы ма-
шинного обучения. Также проведено сравнение 
данного метода с другими статистическими под-
ходами на непосредственных наблюдениях и с 
использованием невязок наблюдений.

2. МОДЕЛИРОВАНИЕ ТРАЕКТОРНЫХ 
ИЗМЕРЕНИЙ

Для тестирования нового метода необходи-
мо было разработать базу данных траекторных 
наблюдений с отмеченными в ней аномалиями. 
Аномальные измерения в реальных данных мож-
но находить вручную, если построить график 
разностной производной по соседним значе-
ниям измерений. В этом случае аномалии будут 
видны в виде скачков и пиков на графике. При 
этом, чем меньше будет шаг по времени между 
измерениями, тем лучше будут они видны. Для 
больших временных шагов можно использовать 
вторую и последующие разностные произво-
дные измерений по времени, что подразумевает 
вычитание соседних значений и деление на шаг 
времени. Однако такой ручной процесс размет-
ки аномалий в реальных наблюдениях довольно 
неудобен и требует больших временных затрат. В 
связи с этим было принято решение смоделиро-
вать траекторные измерения с заранее известны-
ми позициями аномалий, то есть создать модель-
ные размеченные данные.

Также были созданы невязки модельных из-
мерений, содержащих аномалии. Они были по-
лучены на основе расчетных значений измере-
ний с использованием той же модельной орби-
ты. Поэтому невязки не содержат монотонного 
расхождения измерений и расчетных значений, 
которое бы наблюдалось в реальности из-за не-
точности модели движения. А следовательно, 
они не имеют тренда.

Моделирование траекторных измерений осу-
ществлялось в Геоцентрической небесной си-
стеме координат (GCRF). Начало отсчета в си-
стеме координат GCRF находится в центре 
масс Земли, а ее оси закреплены относительно 
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удаленных радиоисточников (квазаров). Геопо-
тенциал Земли рассчитывался в Международной 
земной системе координат (ITRF). Это геоцен-
трическая система координат с началом отсче-
та в центре масс Земли. Ось Z системы ITRF в 
пределах 30 мс дуги совпадает с условным между 
народным началом (CIO), что является средним 
положением земного полюса по измерениям на 
интервале с 1900 по 1905 г [27]. Ось Х лежит в 
плоскости Гринвичского меридиана и экватора, 
ось Y лежит в плоскости меридиана с долготой 
90° и дополняет систему осей до правой трой-
ки векторов. Эфемериды модельных орбит и мо-
дельные измерения привязывались к Всемирно-
му времени UTC (Coordinated Universal Time). 
Это атомная равномерная шкала времени, отли-
чающаяся от Международного атомного време-
ни (TAI) на целое число секунд, называемых ви-
сокосными секундами.

Моделирование орбит

Для моделирования траекторных измерений 
были созданы два набора случайных орбит: низ-
кие околоземные орбиты (НОО) и высокоэл-
липтические орбиты (ВЭО). Каждый из этих на-
боров включал 10000 эфемерид, длительностью 
в один период орбиты. Каждая орбита выбира-
лась случайным образом из заданного диапа-
зона значений элементов Кеплера. Численное 
интегрирование уравнений движения проводи-
лось с помощью метода Эверхарта [28]. Модель 
движения включала в себя расчет геопотенциала 
согласно модели EGM 2008, а также учет планет 
Солнечной системы, Луны и Солнца согласно 
эфемеридам JPL DE433. Для НОО учитывалось 
разложение геопотенциала до степени и поряд-
ка 40, а для ВЭО — до 10. Такой упрощенный вид 
модели движения достаточен для данной задачи, 

поскольку интегрирование орбиты происходит 
только на один период. В табл. 1 представлены 
ограничения на значения элементов Кеплера для 
моделирования случайных НОО и ВЭО.

Модель наблюдений

С помощью модельных орбит были построе-
ны модельные траекторные измерения наклон-
ной дальности. Эти измерения должны соответ-
ствовать реальным траекторным существующих 
космических проектов. 

Реальные измерения наклонной дальности 
проекта “Спектр-Р” проводились по запросной 
схеме, когда сигнал передается на КА с наземной 
станции слежения, а затем переизлучается на нее 
обратно. В дальнейшем эти измерения были ин-
терпретированы в однопутные (беззапросные), 
т.е. наклонную дальность, получаемую при излу-
чении сигнала с борта КА с привязкой к моменту 
времени приема сигнала на наземной станции. 
Поскольку в настоящей работе были задейство-
ваны именно такие однопутные реальные изме-
рения, было принято решение провести модели-
рование наблюдений по схожей схеме. В работе 
использовались две наземные станции слежения: 
Медвежьи Озера и Уссурийск. Наблюдения мо-
делировались на временном интервале в 15 мин 
с шагом 10 с. Интервал для наблюдений выби-
рался случайным образом из интервала модель-
ных орбит с учетом видимости КА с наземной 
станции. Видимость рассчитывалась без ограни-
чений на минимальный угол места для антенны 
станции. Каждая последовательность наблюде-
ний записывалась в отдельный файл. Таким об-
разом, получилось 20000 последовательностей 
измерений, поскольку для каждой орбиты моде-
лировались наблюдения с двух станций.

Таблица 1. Ограничения значений элементов Кеплера для моделирования случайных НОО и ВЭО

Вид 
орбиты a, км e i Ω ω ν

НОО R⊕ + (160, 2000) (0, 0.05) (0, π/2) (0, 2π) (0, 2π) (0, 2π)

ВЭО
R⊕ + (50000, 200000) 
10000 < rp < 60000
ra < 380000

(0.8, 0.95) (0, π/2) (0, 2π) (0, 2π) (0, 2π)

Примечание. R⊕ — средний радиус Земли; rp — перигей; ra — апогей; a — большая полуось; e — эксцентриситет; i — накло-
нение; Ω — долгота восходящего узла; ω — аргумент перицентра; ν — истинная аномалия.
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Моделирование наблюдений включало в себя 
решение светового уравнения, учет задержки 
распространения сигнала в тропосфере и ио-
носфере, а также релятивистскую задержку рас-
пространения сигнала. Для упрощения модели-
рования считалось, что смещения фазового цен-
тра наземной и бортовой антенны уже учтены, а 
ошибки часов КА и наземной станции нулевые. 
Таким образом, модель наблюдений представля-
ется в виде:

P tg ts I T c t� � � � � � � � � � = + + + ⋅ +� ε( ), d rel ,             (1)

где P — модельное измерение; ϱ(tg,ts) — геоме-
трическое расстояние между центрами масс КА в 
момент передачи сигнала ts и наземной станци-
ей в момент приема tg; I –влияние ионосферы; 
T — влияние тропосферы; c — скорость света в 
вакууме; δtrel — влияние релятивизма; ϵ — шум 
модельных измерений. Далее приведены форму-
лы расчета каждого из этих эффектов.

Величина ϱ в уравнении (1) представляет со-
бой геометрическое расстояние между центра-
ми масс КА в момент времени передачи сигнала 
и наземной станции в момент времени приема 
сигнала. На практике известен только момент 
времени приема сигнала. Для вычисления мо-
мента времени передачи рассчитывается задерж-
ка сигнала по формуле:

t R cdelay start� �= ,                           (2)

где Rstart — расстояние между КА и наземной ан-
тенной в момент приема сигнала, c — скорость 
света в вакууме. Затем определяется вектор со-
стояния КА на момент времени tg − δtdelay путем 
численного интегрирования уравнений движе-
ния. Находится новое расстояние R между КА в 
момент времени tg − δtdelay и наземной станцией в 
момент времени tg. Это расстояние поступает на 
вход формулы (2) и вычисляется новая задержка 
сигнала. Данная процедура повторяется итера-
тивно, пока два последующих расстояния R бу-
дут отличаться не больше, чем на некоторое до-
статочно малое число. После этого задержка и, 
соответственно, момент времени передачи сиг-
нала считаются найденными. Основная часть 
ионосферной задержки сигнала I рассчитывает-
ся по формуле:

I M z
f

= ( ) × × ⋅ −
ZTEC

40 309 10 16

2

.
,          (3)

где M(z) есть картирующая функция, завися-
щая от зенитного угла z. Величина полного 

вертикального содержания электронов ZTEC 
(Zenith Total Electron Content) рассчитывает-
ся согласно ионосферным картам, полученным 
центром анализа Международной службы Гло-
бальных навигационных спутниковых систем 
[29]. Данные карты содержат общее содержание 
электронов в ионосфере для сигнала, испуска-
емого в зенит из точки на поверхности Земли. 
Данный формат имеет название IOnosphere map 
Exchange format (IONEX) [30]. Параметр f — это 
частота сигнала в герцах, а ионосферная за-
держка сигнала I по этой формуле вычисляется 
в метрах.

Задержка распространения сигнала в тропос-
фере T не зависит от частоты сигнала и в упро-
щенном виде описывается суммой “сухой” Td и 
“влажной” Tw составляющей. Зенитная задерж-
ка “сухой” составляющей для сигналов радиоди-
апазона описывается формулой:

T m z
P

H
d d= ( ) ⋅

− ( ) − ⋅ ⋅−
0 0022786

1 0 00266 2 2 8 10 7

.

. cos .
,

j
   (4)

где P — атмосферное давление в районе фазо-
вого центра антенны; φ — широта положения 
станции; H — высота станции над уровнем моря 
в метрах. Зенитная задержка “влажной” состав-
ляющей Tw полагалась равной 10 % от “сухой” 
[31]. В качестве картирующей функции m(z) ис-
пользовалась глобальная функция отображения 
GMF [32].

Из-за эффекта задержки распространения 
света при прохождении вблизи массивного тела, 
известного также как эффект Шапиро [33], воз-
никает релятивистская поправка в модели на-
блюдений. Она описывается в виде:

c t
C

r r

r rrel
s g

s g
d µ ρ

ρ
=

+ +
+ −







2

2
ln ,                  (5)

где µ — гравитационный параметр небесного 

массивного тела; 2
2

µ
C

 — гравитационный радиус 

Шварцшильда; rs — геоцентрическое расстояние 
до КА; rg — геоцентрическое расстояние до на-
земной станции; ρ — расстояние между станци-
ей и КА.

Моделирование шума и аномальных измерений

Реальные траекторные измерения также со-
держат некоторый шум ϵ. В настоящей рабо-
те предполагалось, что шум измерений имеет 
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нормальное распределение. Его моделирование 
осуществлялось по формуле:

� � �= AWGN N× , (6)

где AWGN — аддитивный белый гауссовский 
шум, имеющий нулевое среднее и стандартное 
отклонение 1; N — коэффициент, характеризу-
ющий размер шума. По сути N является сред-
неквадратическим отклонением (СКО) шума 
измерений.

Чтобы добавить аномальные измерения в мо-
дельные наблюдения, был использован белый 
гауссовский шум ϵA. Для этого выбирался харак-
терный размер аномального шума и минималь-
ное пороговое значение шума, которое счита-
лось бы аномальным.

 A AS E� � � � � �= >AWGN  min× , ,               (7)

где ϵA — аномальная прибавка к модельному на-
блюдению; S — коэффициент, характеризую-
щий размер аномалий; Emin — минимальное по-
роговое значение аномального измерения. Так-
же была выбрана частота появления аномалий. 
В данной работе она задавалась, как процент p 
аномальных измерений от всех измерений вре-
менного интервала. Таким образом, для модели-
рования наблюдений задавались параметры N, 
S, Emin и p.

Для тестирования метода были созданы мо-
дельные измерения с различным уровнем шума. 
Параметры моделирования выбирались с учетом 
реальных данных проекта “Спектр-Р”. Случай-
ные ошибки измерительных систем в данном 
проекте находились в пределах 10 м [34]. Харак-
терный размер СКО аномалий и частота их по-
явления были выбраны также на основе данных 
проекта “Спектр-Р”. Параметры моделирования 
измерений оказались следующие:

N S N E N p� � � � � � �= = = =10 20 5 1,   min, , %.         (8)

Помимо этого, были созданы модельные из-
мерения с другими значениями параметра N для 
выявления устойчивости метода к различным 
уровням шума.

3. СУЩЕСТВУЮЩИЕ КЛАССИЧЕСКИЕ
МЕТОДЫ

Традиционные методы обнаружения анома-
лий во временных последовательностях просты в 
реализации и не требуют значительных вычисли-
тельных ресурсов, что делает их популярными в 

различных областях анализа временных данных. 
Одним из наиболее распространенных подходов 
по обнаружению аномалий является использо-
вание статистических характеристик данных, 
таких как среднее и стандартное отклонение. 
Например, можно использовать метод Z-оценки 
[14] для определения аномалий там, где значения
превышают определенный порог. Для каждого
значения измерения рассчитывается Z-оценка с
использованием следующей формулы:

z
xi

i = −  µ
s

, (9)

где xi — текущее значение измерения, µ — сред-
нее значение данных, а σ — стандартное откло-
нение. Если Z-оценка превышает заданный по-
рог kz, где kz — настраиваемый параметр, значе-
ние считается аномальным:

zi > k kz z, . 1 3≤ ≤ (10)

Также существует метод адаптивного порога 
[35], который динамически регулирует порог об-
наружения аномалий на основе статистических 
характеристик данных. Сначала метод вычисляет 
среднее значение и стандартное отклонение мас-
сива значений измерений, обозначенные как µ и 
σ соответственно. Порог обновляется по следу-
ющей формуле: 

thr kat at= + +( )µ s s2 2
апр , 1 3≤ ≤kat , x thri at> , (11)

где sапр
2  — априорная оценка дисперсии измере-

ний, kat — настраиваемый параметр.
Метод медианных отклонений [16] основы-

вается на применении медианы для оценки цен-
тральной тенденции и медианного абсолютного 
отклонения для оценки вариативности. Сначала 
вычисляется медиана M значений измерений и 
медианное абсолютное отклонение MAD, опре-
деляемое по формуле:

MAD x M ii= ( )median для всех− , ,        (12)

где xi — текущее значение измерения. Порог для 
определения аномалий обновляется по следую-
щей формуле:

thr M k MAD kmed med med� � � � � �= + >· , ,0           (13)

где kmed — настраиваемый коэффициент, кото-
рый устанавливает уровень чувствительности к 
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аномалиям. Значения измерений, превышаю-
щие порог thrmed, считаются аномальными.

Подбор настраиваемых параметров для клас-
сических методов обнаружения аномалий пред-
ставляет собой сложную задачу, поскольку не-
правильная настройка может привести к вы-
сокому уровню ложно-положительных или 
ложно-отрицательных результатов. Это в свою 
очередь существенно влияет на качество оцен-
ки аномалий и эффективность метода в целом. 
Кроме того, представленные в этом разделе ме-
тоды обычно работают с невязками измерений, 
а для работы с непосредственными наблюдени-
ями необходимо сначала устранить их нелиней-
ный тренд.

4. УДАЛЕНИЕ ТРЕНДА

Для того чтобы лучше выявлять аномальные 
измерения, необходимо рассчитать первую раз-
ностную производную измерений по времени. 
В этом случае аномальные измерения будут хо-
рошо видны в виде скачков и пиков на графике 
разностной производной. Для автоматического 
обнаружения этих пиков необходимо вычесть 
тренд графика разностной производной, т.е. 
привести среднее значение последовательности 
разностных производных измерений максималь-
но близко к нулю. В работе [4] приведены ме-
тоды обнаружения аномалий, в которых исполь-
зуется вычитание тренда. В этих методах тренд 
данных считается линейным, поскольку они ра-
ботают с невязками измерений. Для самих же 
измерений тренд может быть линейным только 
для некоторых участков орбиты и очень корот-
ких временных интервалов. В методах, исполь-
зующих невязки измерений, вычисляется апри-
орная орбита КА, на основе которой задаются 
расчетные значения измерений и составляются 
невязки с реальными наблюдениями. Для этого 
требуется достаточно точная априорная орбита, 
которая не всегда бывает доступна. Например, 
при неправильном учете неконсервативных сил, 
действующих на движение КА сложной формы, 
априорная орбита может приносить в невязки 
измерений значительные нелинейные отклоне-
ния. Также влияние на невязки могут оказать 
маневры КА, столкновения с космическим му-
сором и микрометеоритами. Для космических 
аппаратов, обнаруженных относительно недав-
но, априорная информация может отсутствовать 
и вовсе. К примеру, для систем, обрабатываю-
щих информацию в реальном времени требует-
ся работать с непосредственно поступающими 
наблюдениями. В этом случае априорная орбита 

может быть недоступна или неактуальна и может 
внести дополнительную погрешность. Такие си-
стемы могут использовать алгоритм обобщенно-
го фильтра Калмана [36], для которого априор-
ной орбитой служит оценка вектора состояния 
на предыдущий момент времени, обновляюща-
яся на каждой итерации алгоритма. В приложе-
ниях космической радиоинтерферометрии для 
уточнения орбиты космического радиотелеско-
па можно использовать так называемые остаточ-
ные задержки и частоты интерференции, полу-
ченные в процессе обработки радиоинтерферо-
метрического сеанса наблюдений. В этом случае 
получение априорных значений измерений за-
держек невозможно, а аномалии могут возникать 
в процессе обработки сеанса наблюдений.

Преимущество метода рекурсивного разби-
ения, представленного в настоящей работе, за-
ключается в отсутствии необходимости в рас-
четных аналогах измерений. Следовательно, его 
применение может быть расширено и на другие 
приложения, в которых в принципе не существу-
ет прогнозных значений наблюдений или их по-
строение затруднительно. При работе с непо-
средственно наблюдениями, а не их невязками, 
возникает необходимость удаления нелинейного 
тренда измерений.

В настоящем исследовании для удаления 
тренда из временных последовательностей был 
использован метод сглаживания, основанный 
на полиномиальной регрессии. Этот метод ис-
пользует фильтр сглаживания данных Савиц-
кого – Голея [37] из библиотеки SciPy для язы-
ка программирования Python [38]. Библиотека 
SciPy имеет открытый исходный код и предна-
значена для выполнения научных и инженерных 
расчетов. Фильтр Савицкого – Голея применяет 
локальную полиномиальную регрессию к выбор-
кам данных. В заданном окне значений вычисля-
ется полином определенного порядка, который 
затем используется для предсказания централь-
ной точки этого окна. Это позволяет эффектив-
но экстраполировать общую тенденцию в дан-
ных, минимизируя искажения, характерные для 
других методов сглаживания нелинейных дан-
ных, таких как метод скользящего среднего. Ос-
новное преимущество фильтра заключается в его 
способности сохранять важные характеристики 
данных и не размывать аномальные особенно-
сти временного ряда. В настоящей работе этот 
фильтр позволяет выделить четкую линию трен-
да, которая впоследствии вычитается из времен-
ной последовательности измерений. Это дает 
возможность сосредоточиться на краткосрочных 
колебаниях и структурных изменениях в данных. 

	 КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ      том 63      № 4      2025

ЗАПЕВАЛИН428



Однако следует отметить ограниченную чувстви-
тельность данного метода к медленным случай-
ным процессам, связанным с дрейфом измери-
тельной аппаратуры. Для комплексного анализа 
и выявления подобных систематических ошибок 
или медленных случайных процессов необходи-
мы дополнительные изыскания. В данной работе 
основное внимание уделено обнаружению дис-
кретных аномалий и выявлению кратковремен-
ных выбросов и скачков в данных.

Алгоритм удаления тренда можно описать сле-
дующим образом. Пусть имеется временная по-
следовательность измерений x(t). Для каждого 
значения x(t) выбирается окно из m соседних то-
чек данных, которое включает выборку измере-
ний x(t−s), x(t−s+1) ,...,x(t),...,x(t+s), где s m= − 1

2
. 

Оценка тренда может быть получена с использо-
ванием полинома. Коэффициенты полинома ak 
вычисляются с помощью метода наименьших 
квадратов, осуществляющего минимизацию 
суммы квадратов отклонений между фактиче-
скими значениями и значениями, предсказан-
ными полиномом.

Обозначим вектором y набор измерений в 
окне:

y x t s x t s= ( ) +( ){ }– ,..., .               (14) 

Тогда для получения оценки тренда использу-
ется следующее выражение:

y z a zk
k

k

p

( ) =
=

∑ ,
0

 a T T= ( )J J J y
–

,
1

         (15)

где y (z) — оценка тренда; z — независимая пере-
менная, отнесенная к центру окна и принимаю-
щая значения от –s до s; p — порядок полинома, 
который выбирается экспериментальным путем 
в зависимости от типа данных; a = {ak} — вектор 
коэффициентов полинома, а m — количество то-
чек данных в окне. Матрица J представляет со-
бой матрицу Вандермонда следующего вида:

 J =

( ) ( )
+ +( ) +( )
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
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
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.     (16) 

После получения оценки тренда вычисляется 
детрендированная временная последовательность 

путем вычитания оценки тренда из исходной вре-
менной последовательности:

x z x z y zdetrend ( ) ( ) ( )= −  ,              (17)

где x(z) — исходные значения.

5. МЕТОД РЕКУРСИВНОГО РАЗБИЕНИЯ

В данном разделе приводится описание ме-
тода рекурсивного разбиения для обнаружения 
аномальных измерений. Концепция этого мето-
да основана на разбиении их временного интер-
вала на две равные части и подсчета среднеква-
дратического отклонения измерений в каждой 
из них. Предполагается, что в той части, где 
СКО больше, находится аномальное измерение. 
Эта половина временного интервала в свою оче-
редь также разбивается на две равные части. Так 
продолжается до тех пор, пока не будет найдено 
точное положение предполагаемого аномально-
го измерения. При этом, если СКО предполага-
емой аномалии больше некоторого порогового 
значения, аномалия считается подтвержденной. 
В этом методе предполагается, что измерения 
имеют строгий равномерный шаг по времени.

Алгоритм для выявления аномалий начи-
нается с деления последовательности данных, 
освобожденных от тренда, на две равные части. 
Предполагается, что часть, имеющая более вы-
сокое СКО, содержит аномалии. Эта часть снова 
делится на две половины. Процесс продолжается 
рекурсивно, пока не будет обнаружен участок с 
предполагаемой аномалией. После каждого срав-
нения СКО двух половинных сегментов, более 
высокое значение сравнивается с заранее уста-
новленным порогом. Это значение задает поль-
зователь в зависимости от шума данных и харак-
терного размера аномалий. Если СКО оказыва-
ется меньше порогового значения, то алгоритм 
останавливается. Это означает, что аномалий в 
данной последовательности измерений не найде-
но. Далее представлена краткая схема алгоритма.

Входные данные:
data — массив, последовательность разност-

ных производных траекторных измерений по 
времени,

thr — пороговое значение.
Определяется начальный и конечный индекс:

start

end len data

=
= ( ) −

0

1

,

,
                     (18)

где len — функция поиска длины массива.
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Если:

 end start− ≤( ) 3,                      (19)

то алгоритм завершается и возвращает массив 
data, который содержит аномальный участок. 
В противном случае переходим к следующему 
пункту.

Вычисляется средний индекс:

mid
start end= +  

2
.                   (20)

Вычисляются стандартные отклонения левой 
и правой части:

left std std data start mid

right std std data mid

_

_

� � � ��

� � �

=

=

[ ]( ): ,

���: ,end[ ]( )
           (21)

где data [start : mid] — означает выборку измере-
ний от индекса start до индекса mid.

Если:

max left std right std thr_ _, ,�( ) <             (22)

то алгоритм завершается и возвращает пустой 
массив. Это говорит о том, что аномалии отсут-
ствуют. В противном случае переходим к следу-
ющему пункту.

Обновляется массив данных:

data
data start mid left std right std

data mid end
=

[ ] ≥

[ ]
: , ,

: ,

если _ _

ииначе







обновляются начальный и конечный индексы:

start mid left std right std

end mid right std lef

=
=

<
<

, ,

,

если

если

_ _
_ tt std_ .





Переходим к пункту 2.
После детектирования эпохи аномального 

измерения необходимо продолжать поиск дру-
гих аномалий, поскольку в выбранной последо-
вательности траекторных измерений может при-
сутствовать несколько аномальных значений. 
Для этого достаточно запустить выше предло-
женный алгоритм заново. Так будет происходить 
до тех пор, пока алгоритм не определит, что ано-
малий на данном участке больше нет. Для того 
чтобы этот процесс не происходил бесконечно 
долго в случае выбора малого порогового значе-
ния, пользователь задает максимальное количе-
ство аномалий, которые могут присутствовать во 
временной последовательности измерений.

Однако если для поиска других аномалий 
просто запустить выше предложенный алгоритм 
заново, то он найдет все ту же аномалию, что и в 
первый раз. Поэтому возникает необходимость 
удалить найденную аномалию из временного 
ряда. При этом в месте удаления может возник-
нуть скачок данных, который может быть иден-
тифицирован как ложная аномалия. Вместо уда-
ления, в предложенном методе используется за-
мена найденной аномалии на среднее значение 
последовательности, не содержащей найденных 
аномалий. Стоит учесть, что если в качестве дан-
ных используются первые разностные произво-
дные измерений по времени, то аномальное из-
мерение превратится в два аномальных значения 
разностной производной. В таком случае замене 
подлежит интервал из этих двух значений, кото-
рый можно назвать характерным размером ано-
малии. Поскольку по мере нахождения анома-
лий среднее значение нормальных данных все 
время изменяется, необходимо заменять также 
все найденные участки аномалий новым сред-
ним значением. Это позволит избежать возник-
новения новых скачков и обнаружения ложных 
аномалий. Алгоритм замены выражается следу-
ющим образом.

Допустим имеются следующие входные 
данные:

·	 data — массив данных;
·	 anom — массив индексов найденных 

аномалий;
·	 size — характерный размер аномалии.
1. Создаем маску в виде массива значений ло-

гического типа:

 ∉ +
= ∀ ∈



если

для

иначе

, [ – , ]
[ ]  ,

, .

True i a size a size
mask i a anom

False

2. Вычисляем среднее значение:

mean
M

data j mask j True
j

= =∑1
[ ], [ ] ,где     (23)

где M — количество элементов, удовлетворяю-
щих условию.

3. Заменяем аномальные данные средним 
значением:

data i mean mask i False� � � � � �[ ] [ ]= =, .где

Данный алгоритм автоматически запуска-
ется после алгоритма поиска аномалии. Таким 
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образом, метод рекурсивного разбиения состо-
ит из следующих шагов:

1) вычисление временных разностей 
измерений;

2) удаление тренда последовательности 
измерений;

3) поиск аномального измерения путем ре-
курсивного разбиения последовательности по-
полам и сравнения СКО двух половинок;

4) замена аномального участка специальным 
средним значением;

5) повторение пунктов 3 и 4 до тех пор, пока 
все аномалии не будут найдены, либо пока не 
будет достигнут предел количества найденных 
аномалий.

При этом пользователь может выбирать сле-
дующие параметры метода:

·	 значение порога аномальных измерений;
·	 размер окна измерений для удаления 

тренда;
·	 порядок полинома для удаления тренда;
·	 характерный размер аномалии;
·	 максимальное количество аномальных 

измерений.

6. РЕЗУЛЬТАТЫ

Предложенный метод был опробован на мо-
дельных данных наблюдений для НОО и ВЭО, а 
также на реальных данных проекта “Спектр-Р”. 
В качестве измерений выступали наклонные ра-
диодальности. Было проведено сравнение эф-
фективности предложенного метода на непо-
средственных наблюдениях и их невязках с дру-
гими статистическими методами обнаружения 
аномалий.

Во время тестирования метода анализиро-
вались статистические параметры обнаруже-
ния аномалий. Разработанный метод содержит 
встроенную функцию подсчета статистики, что 
облегчает данную задачу. Данная функция счи-
тает следующие величины:

·	 True Positives (TP) — количество корректно 
обнаруженных аномалий;

·	 False Positives (FP) — количество ложных 
обнаружений, т.е. когда нормальные измерения 
ошибочно классифицируются как аномалии;

·	 False Negatives (FN) — количество необ-
наруженных аномалий, т.е. когда аномальные 
измерения ошибочно классифицируются как 
нормальные.

Критерием эффективности метода обнаруже-
ния аномалий служит процент отбракованных 
измерений при нулевом количестве необнару-
женных аномалий:

q
TP FP

Total
= + ⋅ 100%,               (24)

где Total — общее исследуемое число измерений. 
Чем меньше алгоритм находит ложноположи-
тельных аномалий при стремлении количества 
необнаруженных аномалий к нулю, тем меньше 
q, и тем эффективнее работа данного алгоритма.

На рис. 1 показан пример модельных данных. 
Реальные измерения проекта “Спектр-Р” вы-
глядят аналогично. Из рисунка видно, что ано-
мальные измерения становятся более отчетливо 
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Рис. 1. Пример модельных измерений наклонной даль-
ности для ВЭО  (а). Разностная производная по вре-
мени модельных измерений для ВЭО с вычтенным 
трендом (б). Красным цветом отмечены искусственно 
добавленные аномалии. В данном примере СКО мо-
дельных измерений составляет 50 м
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видны, если составить временные разности из-
мерений и вычесть тренд. Для этих разностей за-
тем применяется алгоритм метода рекурсивного 
разбиения, процесс которого показан на рис. 2. 
После первого прохода метода определяется наи-
большая аномалия во всей временной последо-
вательности. Ее координаты заносятся в память 
компьютера, а сама аномалия заменяется сред-
ним значением нормальных данных согласно 
выражению (23). Затем алгоритм повторяет про-
цедуру поиска других аномалий. В случае, если 
аномалий больше нет или достигнут предел мак-
симального количества аномалий, алгоритм за-
вершается. В итоге в памяти компьютера оста-
ются координаты всех найденных аномальных 
измерений, которые затем используются при об-
работке данных.

На рис. 3 показаны зависимости процента от-
бракованных измерений от числа необнаружен-
ных аномалий FN в случае использования невя-
зок измерений. 

Максимальный процент отбракованных из-
мерений (при FN = 0) показан в табл. 2. Метод 

Первая итерация Вторая итерация Третья итерация Итог

0 30 50 70 9 0 0 30 50 70 90 0 30 50 70 90 0 30 50 70 9 0
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2

1
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–1
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Рис. 2. Пример работы метода рекурсивного разбиения для обнаружения аномальных измерений. См. пояснения 
в тексте

Таблица 2. Максимальный процент отбракованных измерений q при использовании невязок и непосредствен-
ных наблюдений. СКО шума данных 10 м

Процент отбракованных
измерений Метод Z-оценки

Метод 
адаптивного

порога

Метод 
медианных 
отклонений

Метод 
рекурсивного 

разбиения

При использовании
невязок 18.37 12.25 1.24 4.65

При использовании абсолютных 
измерений 48.44 46.98 70.32 6.21

абсолютных медианных отклонений дает наи-
меньший процент отбракованных измерений и 
является наиболее эффективным в этом случае. 
Методы Z-оценки и адаптивного порога дают q, 
равный 18.37 % и 12.25 %, соответственно. Эти 
результаты согласуются с работой [4]. Метод ре-
курсивного разбиения дает q, равный 4.65 %.

Далее эти же методы были протестированы 
на непосредственных наблюдениях. Удаление 
тренда наблюдений во всех методах происхо-
дило согласно разделу 4. Размер окна и поря-
док полинома подбирались экспериментальным 
путем. Наилучшие результаты были получены 
с размером окна  35 и порядком полинома  3. 
На рис. 3б показана зависимость q от FN в слу-
чае использования непосредственных измере-
ний. Метод рекурсивного разбиения показал 
наименьший процент отбракованных измерений 
по сравнению с другими методами.

Результаты также были получены для других 
СКО шума с целью определить устойчивость 
метода и выявить зависимость для порогово-
го значения. Экспериментальным путем было 
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Так как аномалии в этих данных не размечены, 
то проверка корректности обнаружения осу-
ществлялась визуально. Случайным образом 
было выбрано 100 различных интервалов наблю-
дений наклонной дальности. Визуально было 
установлено, что во всех выбранных временных 
последовательностях аномалии были обнаруже-
ны корректно.

7. ОБСУЖДЕНИЕ

Настоящая работа была инициирована в свя-
зи с наличием аномалий в реальных данных 
траекторных измерений, полученных в рамках 
миссий “Спектр-Р” и “Спектр-РГ”. Целью ис-
следования стала разработка метода, способного 
автоматически обнаруживать эти аномалии, по-
скольку они оказывают значительное влияние на 
процесс уточнения орбиты. Для решения этой 
задачи было проведено моделирование данных с 
тщательным подбором параметров моделирова-
ния экспериментальным путем, для того чтобы 
обеспечить близкое соответствие между модель-
ными данными и наблюдениями из реальных 
космических проектов. Для выбора параметров 
использовались случайные интервалы измере-
ний из различных эпох проекта “Спектр-Р”.

Было изучено несколько различных методов 
для обнаружения аномалий во временных после-
довательностях, в том числе методы машинного 
обучения. Несмотря на то что подходы машин-
ного обучения демонстрируют хорошую эффек-
тивность в обработке данных сложной структу-
ры, они часто требуют значительного времени на 
обучение и наличие размеченных тренировоч-
ных данных. Для обнаружения аномалий в тра-
екторных измерениях спутников гораздо удоб-
нее оказываются классические методы. Обычно 
они применяются к невязкам измерений, т.е. ис-
пользуются расчетные значения измерений со-
гласно модели движения и модели наблюдений 
КА. В настоящей работе был предложен альтер-
нативный метод обнаружения аномалий — ме-
тод рекурсивного разбиения, который может 
применяться к непосредственным наблюдениям 
без использования расчетных измерений. Дан-
ный метод был создан на основе документации 
программного обеспечения для определения па-
раметров орбит Bernese [39]. Он был доработан 
и усовершенствован так, как описано в настоя-
щей работе, что и представляет собой ключевой 
результат данного исследования.

Результаты работы показали, что при ис-
пользовании невязок измерений метод меди-
анных абсолютных отклонений оказался более 
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Рис. 3. Зависимость процента отбракованных изме-
рений от числа необнаруженных аномалий FN в слу-
чае использования невязок измерений (а) и в случае 
использования абсолютных измерений (б). СКО мо-
дельных измерений составляет 10 м

установлено, что использование априорной 
оценки шума в качестве порогового значения 
является наиболее оптимальной стратегией вы-
бора порога. При таком значении порога дости-
гаются нулевые значения FN. Также было уста-
новлено, что метод рекурсивного разбиения ра-
ботает в различных условиях шума измерений. 
На рис. 4 отображена зависимость количества 
ложноположительных аномалий при FN = 0 от 
параметра N в моделировании измерений, от-
вечающего за СКО шума измерений. Из рисун-
ка видно, что количество ложноположительных 
аномалий остается примерно на одном уровне 
для всех случаев СКО шума измерений.

Метод рекурсивного разбиения был опробо-
ван на реальных данных проекта “Спектр-Р”. 
Результаты обнаружения приведены на рис. 5. 
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Рис. 5. Пример работы метода рекурсивного разбиения для обнаружения аномальных измерений в реальных дан-
ных наклонной дальности проекта “Спектр-Р”. Зеленым показаны разности измерений по времени с вычтенным 
трендом. Красным отмечены найденные аномалии
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Рис. 4. Зависимость количества ложноположительных аномалий при FN =  0 для различных уровней СКО шума 
измерений N. Общее число измерений эксперимента 1800000

эффективным для обнаружения аномалий. Пре-
имущество метода рекурсивного разбиения ста-
новится очевидным при поиске аномалий без 
использования априорной орбиты и расчетных 

значений. Максимальный процент отбракован-
ных измерений оказался наименьшим среди 
рассматриваемых методов. Этому есть объясне-
ние. Метод рекурсивного разбиения определяет 
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аномалии поочередно, в порядке их величины. 
Поэтому вероятность правильно обнаружить 
аномалию в начале обработки временного ин-
тервала выше, чем в конце алгоритма. Кроме 
того, метод имеет параметр, ограничивающий 
максимальное число аномалий в выборке, что 
не позволяет заходить алгоритму достаточно да-
леко, туда, где выше вероятность обнаружить 
ложноположительную аномалию. В других же 
статистических методах обработка выборки из-
мерений осуществляется пакетным образом, ис-
пользуется единый пороговый уровень для всех 
аномалий.

Алгоритм и программный код метода рекур-
сивного разбиения (https://github.com/paulzap/
RPAD) доступны любому пользователю, что спо-
собствует дальнейшему исследованию и приме-
нению метода. Также к нему прилагается краткая 
инструкция и набор тестовых данных.

Предложенный метод будет использовать-
ся для обработки данных миссий “Спектр— Р”, 
“Спектр-РГ” и будущей миссии “Спектр-М” 
[40]. Благодаря его проверке на модельных дан-
ных, схожих с реальными, метод может считать-
ся надежным инструментом для анализа любых 
типов данных со схожей структурой. Важно от-
метить, что он не требует предварительного обу-
чения и зависит только от порогового значения.

Следует также признать, что, несмотря на 
свою эффективность, метод рекурсивного раз-
биения имеет свои ограничения. В частности, 
его время выполнения увеличивается линей-
но с ростом количества аномалий, что делает 
его вычислительно затратным для наборов дан-
ных с высокой плотностью аномалий. Для ре-
шения этих проблем необходимо дальнейшее 
исследование.

8. ЗАКЛЮЧЕНИЕ

В результате проведенного исследования был 
представлен метод рекурсивного разбиения для 
автоматического обнаружения аномальных из-
мерений в траекторных данных космических ап-
паратов. Этот метод не требует предварительного 
обучения, прост в использовании и демонстри-
рует точность, превосходя традиционные стати-
стические подходы по максимальному проценту 
отбракованных измерений. Результаты тестиро-
вания метода на модельных и реальных данных 
подтверждают его универсальность и эффектив-
ность в различных условиях обработки космиче-
ских данных.

Метод обладает рядом преимуществ. Он не 
зависит от длины интервала измерений, что де-
лает его удобным для использования в задачах 
различного объема, а его гибкость позволяет 
адаптироваться к различным уровням шума в 
данных. Метод не требует грубой оценки орби-
ты, что упрощает его применение для уточнения 
орбиты космических аппаратов. Набор различ-
ных параметров настройки дает возможность 
пользователю адаптировать метод под конкрет-
ные задачи. Кроме того, в отличие от других ме-
тодов, которые обычно ограничиваются вычита-
нием линейного тренда в спутниковых измере-
ниях, в настоящей работе показано, что можно 
эффективно работать и с различными видами 
орбит благодаря использованию полиномиаль-
ной регрессии.

Тем не менее метод рекурсивного разбиения 
имеет свои ограничения: время его выполнения 
зависит от количества аномалий в данных. По-
этому необходимо продолжать исследование и 
совершенствование алгоритма с целью его опти-
мизации и адаптации к различным типам дан-
ных. Наконец, стоит отметить, что представ-
ленный метод имеет открытый код и содержит 
подробные инструкции к использованию. Это 
расширяет возможности его применения в са-
мых разных областях, помимо анализа траекто-
рий космических аппаратов и других спутнико-
вых данных.
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IN TRACKING SATELLITE DATA
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This study presents a method for detecting anomalous measurements in the trajectory data of spacecraft, 
based on recursive partitioning of the time series of observations. This method analyzes the standard 
deviation of the data, effectively identifying anomalous measurements characterized by elevated noise 
levels. A significant advantage of this approach is the lack of requirement for prior knowledge of the 
initial orbital approximation and the absence of a need for pre-training. It has been tested on synthetic 
datasets with artificially introduced anomalies, as well as on real data from the “Spektr-R” spacecraft. 
The results demonstrated an accuracy of 96 % compared to other traditional anomaly detection methods. 
The algorithm of this method is applicable to various types of orbits and scales of observations. Its code 
is available for public use.
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